Suppr超能文献

印度尼西亚望加锡的气候变化与登革热:贝叶斯时空建模。

Climate variability and dengue fever in Makassar, Indonesia: Bayesian spatio-temporal modelling.

机构信息

ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Australia; Universitas Negeri Makassar, Indonesia; Science and Engineering Faculty, School of Mathematical Science, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia.

ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Australia; School of Public Health and Social Work, Queensland University of Technology, Australia.

出版信息

Spat Spatiotemporal Epidemiol. 2020 Jun;33:100335. doi: 10.1016/j.sste.2020.100335. Epub 2020 Feb 7.

Abstract

A range of Bayesian models have been used to describe spatial and temporal patterns of disease in areal unit data. In this study, we applied two Bayesian spatio-temporal conditional autoregressive (ST CAR) models, one of which allows discontinuities in risk between neighbouring areas (creating 'groups'), to examine dengue fever patterns. Data on annual (2002-2017) and monthly (January 2013 - December 2017) dengue cases and climatic factors over 14 geographic areas were obtained for Makassar, Indonesia. Combinations of covariates and model formulations were compared considering credible intervals, overall goodness of fit, and the grouping structure. For annual data, an ST CAR localised model incorporating average humidity provided the best fit, while for monthly data, a single-group ST CAR autoregressive model incorporating rainfall and average humidity was preferred. Using appropriate Bayesian spatio-temporal models enables identification of different groups of areas and the impact of climatic covariates which may help inform policy decisions.

摘要

一系列贝叶斯模型已被用于描述面单元数据中疾病的时空模式。在本研究中,我们应用了两种贝叶斯时空条件自回归(ST CAR)模型,其中一种模型允许相邻区域之间的风险存在不连续性(形成“组”),以研究登革热模式。我们获得了印度尼西亚马卡萨 14 个地理区域的年度(2002-2017 年)和月度(2013 年 1 月至 2017 年 12 月)登革热病例和气候因素数据。考虑了可信区间、整体拟合优度和分组结构,对协变量和模型公式的组合进行了比较。对于年度数据,包含平均湿度的局部 ST CAR 模型提供了最佳拟合,而对于月度数据,首选包含降雨和平均湿度的单组 ST CAR 自回归模型。使用适当的贝叶斯时空模型可以识别不同的区域组和气候协变量的影响,这可能有助于为决策提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验