Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America.
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States of America.
J Mol Cell Cardiol. 2020 Jun;143:120-131. doi: 10.1016/j.yjmcc.2020.04.032. Epub 2020 May 1.
Under stress, the heart undergoes extensive remodeling resulting in cardiac fibrosis and hypertrophy, ultimately contributing to chronic heart failure (CHF). Alterations in microRNA levels are associated with dysfunctional gene expression profiles involved in the pathogenesis of heart failure. We previously showed that myocardial infarction-induced microRNA-enriched extracellular vesicles (EVs) contribute to the reduction in antioxidant enzymes by targeting Nrf2 signaling in CHF. MicroRNA-27a (miRNA-27a) is the predominant microRNA contained in cardiac fibroblast-derived EVs contributing to oxidative stress along with hypertrophic gene expression in cardiomyocytes. In the present study, we observed that miRNA-27a passenger strand (miRNA-27a*) was markedly upregulated in the non-infarcted area of the left ventricle of rats with CHF and encapsulated into EVs and secreted into the circulation. Bioinformatic analysis revealed that PDZ and LIM domain 5 (PDLIM5) is one of the major targets of miRNA-27a*, playing a major role in cardiac structure and function, and potentially contributing to the progression of cardiac hypertrophy. Our in vivo data demonstrate that PDLIM5 is down-regulated in the progression of heart failure, accompanied with the upregulation of hypertrophic genes and consistent with alterations in miRNA-27a*. Moreover, exogenous administration of miRNA27a* mimics inhibit PDLIM5 translation in cardiomyocytes whereas a miRNA27a* inhibitor enhanced PDLIM5 expression. Importantly, we confirmed that infarcted hearts have higher abundance of miRNA-27a* in EVs compared to normal hearts and further demonstrated that cultured cardiac fibroblasts secrete miRNA27a*-enriched EVs into the extracellular space in response to Angiotensin II stimulation, which inhibited PDLIM5 translation, leading to cardiomyocyte hypertrophic gene expression. In vivo studies suggest that the administration of a miRNA-27a* inhibitor in CHF rats partially blocks endogenous miR-27a* expression, prevents hypertrophic gene expression and improves myocardial contractility. These findings suggest that cardiac fibroblast-secretion of miRNA27a*-enriched EVs may act as a paracrine signaling mediator of cardiac hypertrophy that has potential as a novel therapeutic target.
在压力下,心脏会经历广泛的重塑,导致心肌纤维化和肥大,最终导致慢性心力衰竭 (CHF)。miRNA 水平的改变与心力衰竭发病机制中功能失调的基因表达谱有关。我们之前的研究表明,心肌梗死诱导的富含 miRNA 的细胞外囊泡 (EVs) 通过靶向 CHF 中的 Nrf2 信号通路,导致抗氧化酶减少。miRNA-27a (miRNA-27a) 是心肌成纤维细胞来源的 EV 中含量最多的 miRNA,与心肌细胞中的氧化应激和肥大基因表达有关。在本研究中,我们观察到 CHF 大鼠左心室非梗死区 miRNA-27a 过客链 (miRNA-27a*) 显著上调,并被包裹在 EVs 中并分泌到循环中。生物信息学分析表明,PDZ 和 LIM 结构域 5 (PDLIM5) 是 miRNA-27a* 的主要靶标之一,在心脏结构和功能中起主要作用,并可能促进心肌肥大的进展。我们的体内数据表明,PDLIM5 在心力衰竭的进展过程中下调,同时伴有肥大基因的上调,与 miRNA-27a* 的改变一致。此外,外源性给予 miRNA27a* 模拟物可抑制心肌细胞中 PDLIM5 的翻译,而 miRNA27a* 抑制剂则增强 PDLIM5 的表达。重要的是,我们证实与正常心脏相比,梗死心脏 EVs 中的 miRNA-27a* 含量更高,并进一步表明,培养的心肌成纤维细胞在血管紧张素 II 刺激下分泌富含 miRNA27a* 的 EVs 进入细胞外空间,抑制 PDLIM5 翻译,导致心肌细胞肥大基因表达。体内研究表明,在 CHF 大鼠中给予 miRNA-27a* 抑制剂可部分阻断内源性 miR-27a* 的表达,阻止肥大基因的表达并改善心肌收缩力。这些发现表明,富含 miRNA27a* 的心肌成纤维细胞分泌的 EVs 可能作为心脏肥大的旁分泌信号介质发挥作用,具有作为新型治疗靶点的潜力。