Suppr超能文献

单细胞酵母快速适应的代谢成本。

Metabolic cost of rapid adaptation of single yeast cells.

机构信息

Laboratoire de Colloïdes et Matériaux Divisés, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, 75231 Paris Cedex 05, France.

Laboratoire de Biochimie, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, 75231 Paris Cedex 05, France.

出版信息

Proc Natl Acad Sci U S A. 2020 May 19;117(20):10660-10666. doi: 10.1073/pnas.1913767117. Epub 2020 May 5.

Abstract

Cells can rapidly adapt to changing environments through nongenetic processes; however, the metabolic cost of such adaptation has never been considered. Here we demonstrate metabolic coupling in a remarkable, rapid adaptation process (1 in 1,000 cells adapt per hour) by simultaneously measuring metabolism and division of thousands of individual cells using a droplet microfluidic system: droplets containing single cells are immobilized in a two-dimensional (2D) array, with osmotically induced changes in droplet volume being used to measure cell metabolism, while simultaneously imaging the cells to measure division. Following a severe challenge, most cells, while not dividing, continue to metabolize, displaying a remarkably wide diversity of metabolic trajectories from which adaptation events can be anticipated. Adaptation requires a characteristic amount of energy, indicating that it is an active process. The demonstration that metabolic trajectories predict adaptation events provides evidence of tight energetic coupling between metabolism and regulatory reorganization in adaptation. This process allows to adapt on a physiological timescale, but related phenomena may also be important in other processes, such as cellular differentiation, cellular reprogramming, and the emergence of drug resistance in cancer.

摘要

细胞可以通过非遗传过程快速适应不断变化的环境;然而,这种适应的代谢成本从未被考虑过。在这里,我们使用液滴微流控系统同时测量数千个单个细胞的代谢和分裂,展示了一种显著的快速适应过程(每小时有 1/1000 的细胞适应)中的代谢偶联:含有单细胞的液滴被固定在二维(2D)阵列中,通过渗透压诱导的液滴体积变化来测量细胞代谢,同时对细胞进行成像以测量分裂。在受到严重挑战后,大多数细胞虽然不分裂,但仍继续代谢,显示出非常多样化的代谢轨迹,从中可以预测适应事件。适应需要一定数量的能量,这表明它是一个主动的过程。代谢轨迹预测适应事件的证明提供了证据,表明代谢和调节重组在适应过程中紧密地偶联在一起。这个过程使能够在生理时间尺度上进行适应,但相关现象在其他过程中也可能很重要,例如细胞分化、细胞重编程和癌症中耐药性的出现。

相似文献

1
Metabolic cost of rapid adaptation of single yeast cells.
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10660-10666. doi: 10.1073/pnas.1913767117. Epub 2020 May 5.
2
Microfluidics for single-cell lineage tracking over time to characterize transmission of phenotypes in .
STAR Protoc. 2020 Dec 16;1(3):100228. doi: 10.1016/j.xpro.2020.100228. eCollection 2020 Dec 18.
3
A droplet-to-digital (D2D) microfluidic device for single cell assays.
Lab Chip. 2015 Jan 7;15(1):225-36. doi: 10.1039/c4lc00794h.
4
Applying Microfluidic Systems to Study Effects of Glucose at Single-Cell Level.
Methods Mol Biol. 2018;1713:109-121. doi: 10.1007/978-1-4939-7507-5_9.
5
Monitoring single-cell bioenergetics via the coarsening of emulsion droplets.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7181-6. doi: 10.1073/pnas.1200894109. Epub 2012 Apr 25.
6
High-Throughput Microfluidics for the Screening of Yeast Libraries.
Methods Mol Biol. 2018;1671:307-317. doi: 10.1007/978-1-4939-7295-1_19.
7
A microfluidic system for dynamic yeast cell imaging.
Biotechniques. 2008 Jan;44(1):91-5. doi: 10.2144/000112673.
8
Flavin-based metabolic cycles are integral features of growth and division in single yeast cells.
Sci Rep. 2018 Dec 21;8(1):18045. doi: 10.1038/s41598-018-35936-w.
9
Microfluidic platforms for single-cell protein analysis.
J Lab Autom. 2013 Dec;18(6):446-54. doi: 10.1177/2211068213494389. Epub 2013 Jul 2.

引用本文的文献

3
The use of droplet-based microfluidic technologies for accelerated selection of and yeast mutants.
Biol Methods Protoc. 2024 Jul 10;9(1):bpae049. doi: 10.1093/biomethods/bpae049. eCollection 2024.
6
Growth-Associated Droplet Shrinkage for Bacterial Quantification, Growth Monitoring, and Separation by Ultrahigh-Throughput Microfluidics.
ACS Omega. 2022 Mar 30;7(14):12039-12047. doi: 10.1021/acsomega.2c00248. eCollection 2022 Apr 12.
7
Cancer progression as a learning process.
iScience. 2022 Feb 14;25(3):103924. doi: 10.1016/j.isci.2022.103924. eCollection 2022 Mar 18.

本文引用的文献

1
Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance.
Cell Stem Cell. 2019 Jan 3;24(1):65-78. doi: 10.1016/j.stem.2018.11.011. Epub 2018 Dec 13.
2
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
4
The Genetic/Non-genetic Duality of Drug 'Resistance' in Cancer.
Trends Cancer. 2018 Feb;4(2):110-118. doi: 10.1016/j.trecan.2018.01.001. Epub 2018 Feb 3.
5
Stem Cell Differentiation as a Non-Markov Stochastic Process.
Cell Syst. 2017 Sep 27;5(3):268-282.e7. doi: 10.1016/j.cels.2017.08.009.
6
Epigenetic plasticity and the hallmarks of cancer.
Science. 2017 Jul 21;357(6348). doi: 10.1126/science.aal2380.
8
The extended evolutionary synthesis: its structure, assumptions and predictions.
Proc Biol Sci. 2015 Aug 22;282(1813):20151019. doi: 10.1098/rspb.2015.1019.
9
The unforeseen challenge: from genotype-to-phenotype in cell populations.
Rep Prog Phys. 2015 Feb;78(3):036602. doi: 10.1088/0034-4885/78/3/036602. Epub 2015 Feb 26.
10
Induced mutations in yeast cell populations adapting to an unforeseen challenge.
PLoS One. 2014 Oct 23;9(10):e111133. doi: 10.1371/journal.pone.0111133. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验