Suppr超能文献

癌症进展作为一个学习过程。

Cancer progression as a learning process.

作者信息

Shomar Aseel, Barak Omri, Brenner Naama

机构信息

Department of Chemical Engineering, Israel Institute of Technology, Haifa 32000, Israel.

Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel.

出版信息

iScience. 2022 Feb 14;25(3):103924. doi: 10.1016/j.isci.2022.103924. eCollection 2022 Mar 18.

Abstract

Drug resistance and metastasis-the major complications in cancer-both entail adaptation of cancer cells to stress, whether a drug or a lethal new environment. Intriguingly, these adaptive processes share similar features that cannot be explained by a pure Darwinian scheme, including dormancy, increased heterogeneity, and stress-induced plasticity. Here, we propose that learning theory offers a framework to explain these features and may shed light on these two intricate processes. In this framework, learning is performed at the single-cell level, by stress-driven exploratory trial-and-error. Such a process is not contingent on pre-existing pathways but on a random search for a state that diminishes the stress. We review underlying mechanisms that may support this search, and show by using a learning model that such exploratory learning is feasible in a high-dimensional system as the cell. At the population level, we view the tissue as a network of exploring agents that communicate, restraining cancer formation in health. In this view, disease results from the breakdown of homeostasis between cellular exploratory drive and tissue homeostasis.

摘要

耐药性和转移——癌症的主要并发症——都需要癌细胞适应压力,无论是药物还是致命的新环境。有趣的是,这些适应性过程具有相似的特征,而这些特征无法用纯粹的达尔文机制来解释,包括休眠、增加的异质性和应激诱导的可塑性。在这里,我们提出学习理论提供了一个框架来解释这些特征,并可能为这两个复杂的过程提供启示。在这个框架中,学习是在单细胞水平上通过压力驱动的探索性试错来进行的。这样一个过程并不依赖于预先存在的途径,而是随机寻找一种能减轻压力的状态。我们回顾了可能支持这种搜索的潜在机制,并通过使用一个学习模型表明,这种探索性学习在像细胞这样的高维系统中是可行的。在群体水平上,我们将组织视为一个相互交流的探索主体网络,在健康状态下抑制癌症形成。按照这种观点,疾病是由细胞探索驱动力和组织稳态之间的平衡破坏导致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f00a/8898914/a4e7831be959/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验