School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.
Sci Rep. 2020 May 5;10(1):7590. doi: 10.1038/s41598-020-63552-0.
Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC.
大脑中的专门处理是由多个组织为功能模块的脑区完成的。尽管,对大脑功能模块的活体研究涉及多个功能磁共振成像 (fMRI) 扫描,但从大脑功能网络中得出功能模块的方法忽略了功能结构的个体差异,并使用不完整的功能连接信息。为了解决这个问题,我们提出了一种迭代共识谱聚类 (ICSC) 算法,该算法可以从多个扫描中得出的个体密集加权连接矩阵中检测出最具代表性的模块。ICSC 算法通过迭代最小化两个之间的共识成本,从多个个体的模块中得出组水平的模块。我们证明,ICSC 算法可用于从来自人类连接组计划的 589 个主体的静息态 fMRI 扫描中得出生物学上合理的组水平(多个主体)和主体水平(多个主体扫描)的大脑模块。我们采用了一种多管齐下的策略来证明 ICSC 算法获得的模块化的有效性。我们发现,在不同的个体中,模块化结构存在很大的异质性,涉及视觉和运动处理的模块在个体之间高度稳定。相反,我们发现同一个体的扫描之间的变异性较低。我们的算法的性能与现有的功能性脑模块化方法进行了比较,结果表明,我们的方法可以检测出更具代表性的模块。最后,对合成图像的实验定量地证明了,在不同的条件下,ICSC 算法可以准确地检测出组水平和主体水平的模块。因此,除了为一组主体识别功能模块外,该方法还可以用于个性化神经科学的应用。ICSC 的实现可在 https://github.com/SCSE-Biomedical-Computing-Group/ICSC 获得。