Suppr超能文献

采用单层压印在环烯烃共聚物上制造自对准微流控无接触电渗流装置。

Self-aligned microfluidic contactless dielectrophoresis device fabricated by single-layer imprinting on cyclic olefin copolymer.

机构信息

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.

CytoRecovery, Inc., Blacksburg, VA, 24060, USA.

出版信息

Anal Bioanal Chem. 2020 Jun;412(16):3881-3889. doi: 10.1007/s00216-020-02667-9. Epub 2020 May 5.

Abstract

The trapping and deflection of biological cells by dielectrophoresis (DEP) at field non-uniformities in a microfluidic device is often conducted in a contactless dielectrophoresis (cDEP) mode, wherein the electrode channel is in a different layer than the sample channel, so that field penetration through the interceding barrier causes DEP above critical cut-off frequencies. In this manner, through physical separation of the electrode and sample channels, it is possible to spatially modulate electric fields with no electrode-induced damage to biological cells in the sample channel. However, since this device requires interlayer alignment of the electrode to sample channel and needs to maintain a thin interceding barrier (~ 15 μm) over the entire length over which DEP is needed (~ 1 cm), variations in alignment and microstructure fidelity cause wide variations in cDEP trapping level and frequency response across devices. We present a strategy to eliminate interlayer alignment by fabricating self-aligned electrode and sample channels, simultaneously with the interceding barrier layer (14-μm width and 50-μm depth), using a single-layer imprint and bond process on cyclic olefin copolymer. Specifically, by designing support structures, we preserve fidelity of the high aspect ratio insulating posts in the sample channel and the interceding barrier between the sample and electrode channels over the entire device footprint (~ 1 cm). The device operation is validated based on impedance measurements to quantify field penetration through the interceding barrier and by DEP trapping measurements. The presented fabrication strategy can eventually improve cDEP device manufacturing protocols to enable more reproducible DEP performance. Graphical abstract.

摘要

在微流控装置中,通过非均匀电场的介电泳(DEP)来捕获和偏转生物细胞通常采用非接触式介电泳(cDEP)模式,其中电极通道位于与样品通道不同的层中,因此电场通过中间隔离层的穿透会导致介电泳超过临界截止频率。通过电极和样品通道的物理分离,可以对电场进行空间调制,而不会对样品通道中的生物细胞造成电极诱导的损伤。然而,由于这种设备需要对电极和样品通道进行层间对准,并需要在需要DEP 的整个长度上保持薄的中间隔离层(15μm)(1cm),因此对准和微结构保真度的变化会导致 cDEP 捕获水平和频率响应在设备之间产生很大的差异。我们提出了一种通过在环状烯烃共聚物上使用单层压印和键合工艺同时制造自对准电极和样品通道以及中间隔离层(14μm 宽和 50μm 深)来消除层间对准的策略。具体来说,通过设计支撑结构,我们保留了样品通道中高纵横比绝缘柱和样品与电极通道之间中间隔离层的保真度,跨越整个设备足迹(~1cm)。通过阻抗测量来量化中间隔离层的电场穿透,并通过 DEP 捕获测量来验证设备的操作。所提出的制造策略最终可以改进 cDEP 设备制造协议,以实现更可重复的 DEP 性能。

相似文献

1
Self-aligned microfluidic contactless dielectrophoresis device fabricated by single-layer imprinting on cyclic olefin copolymer.
Anal Bioanal Chem. 2020 Jun;412(16):3881-3889. doi: 10.1007/s00216-020-02667-9. Epub 2020 May 5.
3
Multilayer contactless dielectrophoresis: theoretical considerations.
Electrophoresis. 2012 Jul;33(13):1938-46. doi: 10.1002/elps.201100677.
5
6
Contactless dielectrophoresis: a new technique for cell manipulation.
Biomed Microdevices. 2009 Oct;11(5):997-1006. doi: 10.1007/s10544-009-9317-5. Epub 2009 May 5.
8
9
Microfluidic Device for Cell Trapping with Carbon Electrodes Using Dielectrophoresis.
Biomed Microdevices. 2018 Dec 10;20(4):102. doi: 10.1007/s10544-018-0350-0.
10
Toward low-voltage dielectrophoresis-based microfluidic systems: A review.
Electrophoresis. 2021 Mar;42(5):565-587. doi: 10.1002/elps.202000213. Epub 2020 Nov 22.

本文引用的文献

1
Electrophysiology-based stratification of pancreatic tumorigenicity by label-free single-cell impedance cytometry.
Anal Chim Acta. 2020 Mar 8;1101:90-98. doi: 10.1016/j.aca.2019.12.033. Epub 2019 Dec 19.
2
On-Chip Impedance for Quantifying Parasitic Voltages During AC Electrokinetic Trapping.
IEEE Trans Biomed Eng. 2020 Jun;67(6):1664-1671. doi: 10.1109/TBME.2019.2942572. Epub 2019 Sep 19.
4
Simultaneous isolation and label-free identification of bacteria using contactless dielectrophoresis and Raman spectroscopy.
Electrophoresis. 2019 May;40(10):1446-1456. doi: 10.1002/elps.201800389. Epub 2019 Mar 29.
6
Microfluidic Single-Cell Manipulation and Analysis: Methods and Applications.
Micromachines (Basel). 2019 Feb 1;10(2):104. doi: 10.3390/mi10020104.
7
A simple electrical approach to monitor dielectrophoretic focusing of particles flowing in a microchannel.
Electrophoresis. 2019 May;40(10):1400-1407. doi: 10.1002/elps.201800423. Epub 2019 Jan 25.
8
On the recent developments of insulator-based dielectrophoresis: A review.
Electrophoresis. 2019 Feb;40(3):358-375. doi: 10.1002/elps.201800285. Epub 2018 Aug 30.
9
Deterministic Ratchet for Sub-micrometer (Bio)particle Separation.
Anal Chem. 2018 Apr 3;90(7):4370-4379. doi: 10.1021/acs.analchem.7b03774. Epub 2018 Mar 23.
10
A reproducible method for m precision alignment of PDMS microchannels with on-chip electrodes using a mask aligner.
Biomicrofluidics. 2017 Dec 20;11(6):064111. doi: 10.1063/1.5001145. eCollection 2017 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验