North Carolina State University, Raleigh, North Carolina, United States.
University of Washington, Seattle, Washington, United States.
J Physiol. 2020 Aug;598(15):3203-3222. doi: 10.1113/JP279393. Epub 2020 Jun 23.
Right heart catheterization data from clinical records of heart transplant patients are used to identify patient-specific models of the cardiovascular system. These patient-specific cardiovascular models represent a snapshot of cardiovascular function at a given post-transplant recovery time point. This approach is used to describe cardiac function in 10 heart transplant patients, five of which had multiple right heart catheterizations allowing an assessment of cardiac function over time. These patient-specific models are used to predict cardiovascular function in the form of right and left ventricular pressure-volume loops and ventricular power, an important metric in the clinical assessment of cardiac function. Outcomes for the longitudinally tracked patients show that our approach was able to identify the one patient from the group of five that exhibited post-transplant cardiovascular complications.
Heart transplant patients are followed with periodic right heart catheterizations (RHCs) to identify post-transplant complications and guide treatment. Post-transplant positive outcomes are associated with a steady reduction of right ventricular and pulmonary arterial pressures, toward normal levels of right-side pressure (about 20 mmHg) measured by RHC. This study shows that more information about patient progression is obtained by combining standard RHC measures with mechanistic computational cardiovascular system models. The purpose of this study is twofold: to understand how cardiovascular system models can be used to represent a patient's cardiovascular state, and to use these models to track post-transplant recovery and outcome. To obtain reliable parameter estimates comparable within and across datasets, we use sensitivity analysis, parameter subset selection, and optimization to determine patient-specific mechanistic parameters that can be reliably extracted from the RHC data. Patient-specific models are identified for 10 patients from their first post-transplant RHC, and longitudinal analysis is carried out for five patients. Results of the sensitivity analysis and subset selection show that we can reliably estimate seven non-measurable quantities; namely, ventricular diastolic relaxation, systemic resistance, pulmonary venous elastance, pulmonary resistance, pulmonary arterial elastance, pulmonary valve resistance and systemic arterial elastance. Changes in parameters and predicted cardiovascular function post-transplant are used to evaluate the cardiovascular state during recovery of five patients. Of these five patients, only one showed inconsistent trends during recovery in ventricular pressure-volume relationships and power output. At the four-year post-transplant time point this patient exhibited biventricular failure along with graft dysfunction while the remaining four exhibited no cardiovascular complications.
从心脏移植患者的临床记录中提取右心导管检查数据,用于确定患者特定的心血管系统模型。这些患者特定的心血管模型代表了给定的移植后恢复时间点的心血管功能的快照。该方法用于描述 10 名心脏移植患者的心脏功能,其中 5 名患者进行了多次右心导管检查,以评估随时间推移的心脏功能。这些患者特定的模型用于以右心室和左心室压力-容积环以及心室功率的形式预测心血管功能,心室功率是心脏功能临床评估中的一个重要指标。对纵向跟踪患者的结果表明,我们的方法能够识别出 5 名患者中的 1 名患者,该患者在移植后出现心血管并发症。
心脏移植患者定期接受右心导管检查(RHC),以识别移植后的并发症并指导治疗。移植后良好的结果与右心室和肺动脉压的稳定降低有关,朝着 RHC 测量的右心压力(约 20mmHg)的正常水平降低。这项研究表明,通过将标准 RHC 测量值与机械心血管系统模型相结合,可以获得更多有关患者进展的信息。这项研究的目的有两个:一是了解如何使用心血管系统模型来代表患者的心血管状态;二是使用这些模型来跟踪移植后的恢复和结果。为了获得可在数据集内和跨数据集之间进行比较的可靠参数估计值,我们使用敏感性分析、参数子集选择和优化来确定可以从 RHC 数据中可靠提取的患者特定的机械参数。从 10 名患者的首次移植后 RHC 中确定了患者特定的模型,并对 5 名患者进行了纵向分析。敏感性分析和子集选择的结果表明,我们可以可靠地估计 7 个不可测量的量,即心室舒张松弛、全身阻力、肺静脉弹性、肺阻力、肺动脉弹性、肺动脉瓣阻力和体动脉弹性。移植后参数和预测心血管功能的变化用于评估 5 名患者恢复期间的心血管状态。在这 5 名患者中,只有 1 名患者在心室压力-容积关系和功率输出的恢复过程中表现出不一致的趋势。在移植后 4 年的时间点,该患者出现了双心室衰竭以及移植物功能障碍,而其余 4 名患者则没有出现心血管并发症。