Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Nat Commun. 2020 May 8;11(1):2313. doi: 10.1038/s41467-020-15146-7.
Humans are adept at uncovering abstract associations in the world around them, yet the underlying mechanisms remain poorly understood. Intuitively, learning the higher-order structure of statistical relationships should involve complex mental processes. Here we propose an alternative perspective: that higher-order associations instead arise from natural errors in learning and memory. Using the free energy principle, which bridges information theory and Bayesian inference, we derive a maximum entropy model of people's internal representations of the transitions between stimuli. Importantly, our model (i) affords a concise analytic form, (ii) qualitatively explains the effects of transition network structure on human expectations, and (iii) quantitatively predicts human reaction times in probabilistic sequential motor tasks. Together, these results suggest that mental errors influence our abstract representations of the world in significant and predictable ways, with direct implications for the study and design of optimally learnable information sources.
人类善于发现周围世界中抽象的关联,但背后的机制仍知之甚少。直观地说,学习统计关系的高阶结构应该涉及复杂的心理过程。在这里,我们提出了一种替代观点:高阶关联是从学习和记忆中的自然错误中产生的。我们使用自由能原理(它连接了信息论和贝叶斯推断),推导出了人们对刺激之间转换的内部表示的最大熵模型。重要的是,我们的模型(i)具有简洁的解析形式,(ii)定性地解释了转换网络结构对人类预期的影响,(iii)定量地预测了人类在概率性序列运动任务中的反应时间。这些结果表明,心理错误以显著且可预测的方式影响我们对世界的抽象表示,这对最优可学习信息源的研究和设计具有直接意义。