Suppr超能文献

概率学习过程中用于置信加权和层次推理的脑网络。

Brain networks for confidence weighting and hierarchical inference during probabilistic learning.

作者信息

Meyniel Florent, Dehaene Stanislas

机构信息

Cognitive Neuroimaging Unit, NeuroSpin Center, Institute of Life Sciences Frédéric Joliot, Fundemental Research Division, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Sud, Université Paris-Saclay, 91191 Gif/Yvette, France;

Chair of Experimental Cognitive Psychology, Collège de France, 75005 Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2017 May 9;114(19):E3859-E3868. doi: 10.1073/pnas.1615773114. Epub 2017 Apr 24.

Abstract

Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This "confidence weighting" implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain's learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences.

摘要

当世界随机且不断波动时,学习就变得困难。经典的学习算法,如具有恒定学习率的增量规则,并非最优。从数学角度来看,最优学习规则需要根据先验知识和新传入证据各自的可靠性对它们进行加权。这种“置信度加权”意味着要对所学内容的可靠性进行准确估计。在此,我们使用功能磁共振成像(fMRI)和理想观察者分析,证明大脑的学习算法依赖于置信度加权。在功能磁共振成像扫描仪中,成年人类试图学习听觉或视觉序列背后的转移概率,并报告他们对这些估计的置信度。他们知道这些转移概率可能在不可预测的时刻同时发生变化,因此学习问题本质上是分层的。主观置信度报告紧密遵循理想观察者得出的预测。特别是,受试者能够按照贝叶斯最优推理的要求,为每个学到的转移概率赋予不同程度的置信度。不同的脑区追踪给定当前预测时新观察结果的可能性以及对这些预测的置信度。这两种信号在右下额叶回中结合,在那里它们按照置信度加权模型运行。这个脑区还呈现出一个分层过程的特征,该过程能够区分不同的不确定性来源。总之,我们的结果提供了证据,表明置信感是人类大脑概率学习的一个基本要素,并且右下额叶回承载了一种用于听觉和视觉序列的基于置信度的统计学习算法。

相似文献

2
The Sense of Confidence during Probabilistic Learning: A Normative Account.概率学习过程中的信心感:一种规范性解释。
PLoS Comput Biol. 2015 Jun 15;11(6):e1004305. doi: 10.1371/journal.pcbi.1004305. eCollection 2015 Jun.
3
The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.层级预测对知觉决策的神经关联。
J Neurosci. 2018 May 23;38(21):5008-5021. doi: 10.1523/JNEUROSCI.2901-17.2018. Epub 2018 Apr 30.
5
Neurocomputational Dynamics of Sequence Learning.序列学习的神经计算动力学。
Neuron. 2018 Jun 27;98(6):1282-1293.e4. doi: 10.1016/j.neuron.2018.05.013. Epub 2018 May 31.
6
Brain dynamics for confidence-weighted learning.脑动力学与置信权重学习。
PLoS Comput Biol. 2020 Jun 2;16(6):e1007935. doi: 10.1371/journal.pcbi.1007935. eCollection 2020 Jun.
7
Confidence of probabilistic predictions modulates the cortical response to pain.概率预测的置信度调节疼痛的皮层反应。
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2212252120. doi: 10.1073/pnas.2212252120. Epub 2023 Jan 20.

引用本文的文献

1
Data-driven equation discovery reveals nonlinear reinforcement learning in humans.数据驱动的方程发现揭示了人类的非线性强化学习。
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2413441122. doi: 10.1073/pnas.2413441122. Epub 2025 Jul 31.
4
Brain network dynamics predict moments of surprise across contexts.脑网络动力学可预测不同情境下的意外时刻。
Nat Hum Behav. 2025 Mar;9(3):554-568. doi: 10.1038/s41562-024-02017-0. Epub 2024 Dec 23.
8
Model-Based Approaches to Investigating Mismatch Responses in Schizophrenia.基于模型的精神分裂症失配反应研究方法。
Clin EEG Neurosci. 2025 Jan;56(1):8-21. doi: 10.1177/15500594241253910. Epub 2024 May 15.
10
Inattention and Uncertainty in the Predictive Brain.预测性大脑中的注意力不集中与不确定性。
Front Neuroergon. 2021 Sep 28;2:718699. doi: 10.3389/fnrgo.2021.718699. eCollection 2021.

本文引用的文献

7
Is Model Fitting Necessary for Model-Based fMRI?基于模型的功能磁共振成像是否需要模型拟合?
PLoS Comput Biol. 2015 Jun 18;11(6):e1004237. doi: 10.1371/journal.pcbi.1004237. eCollection 2015 Jun.
8
The Sense of Confidence during Probabilistic Learning: A Normative Account.概率学习过程中的信心感:一种规范性解释。
PLoS Comput Biol. 2015 Jun 15;11(6):e1004305. doi: 10.1371/journal.pcbi.1004305. eCollection 2015 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验