Suppr超能文献

使用Qurro可视化“组学”特征排名和对数比率。

Visualizing 'omic feature rankings and log-ratios using Qurro.

作者信息

Fedarko Marcus W, Martino Cameron, Morton James T, González Antonio, Rahman Gibraan, Marotz Clarisse A, Minich Jeremiah J, Allen Eric E, Knight Rob

机构信息

Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

Center for Microbiome Innovation, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

出版信息

NAR Genom Bioinform. 2020 Jun;2(2):lqaa023. doi: 10.1093/nargab/lqaa023. Epub 2020 Apr 28.

Abstract

Many tools for dealing with compositional ' 'omics' data produce feature-wise values that can be ranked in order to describe features' associations with some sort of variation. These values include differentials (which describe features' associations with specified covariates) and feature loadings (which describe features' associations with variation along a given axis in a biplot). Although prior work has discussed the use of these 'rankings' as a starting point for exploring the log-ratios of particularly high- or low-ranked features, such exploratory analyses have previously been done using custom code to visualize feature rankings and the log-ratios of interest. This approach is laborious, prone to errors and raises questions about reproducibility. To address these problems we introduce Qurro, a tool that interactively visualizes a plot of feature rankings (a 'rank plot') alongside a plot of selected features' log-ratios within samples (a 'sample plot'). Qurro's interface includes various controls that allow users to select features from along the rank plot to compute a log-ratio; this action updates both the rank plot (through highlighting selected features) and the sample plot (through displaying the current log-ratios of samples). Here, we demonstrate how this unique interface helps users explore feature rankings and log-ratios simply and effectively.

摘要

许多用于处理组合式“组学”数据的工具会生成特征层面的值,这些值可以进行排序,以便描述特征与某种变异之间的关联。这些值包括差异值(描述特征与指定协变量之间的关联)和特征载荷(描述特征与双标图中给定轴上的变异之间的关联)。尽管先前的研究已经讨论过将这些“排名”用作探索排名特别高或特别低的特征的对数比率的起点,但此前此类探索性分析是使用自定义代码来可视化特征排名和感兴趣的对数比率。这种方法既费力又容易出错,还会引发关于可重复性的问题。为了解决这些问题,我们引入了Qurro,这是一种工具,它可以交互式地可视化特征排名图(“排名图”)以及样本中所选特征的对数比率图(“样本图”)。Qurro的界面包括各种控件,允许用户从排名图中选择特征以计算对数比率;此操作会更新排名图(通过突出显示所选特征)和样本图(通过显示样本的当前对数比率)。在此,我们展示了这个独特的界面如何帮助用户简单有效地探索特征排名和对数比率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b0/7671379/5a13a4391272/lqaa023fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验