Hasan K M Faridul, Horváth Péter György, Alpár Tibor
Simonyi Károly Faculty of Engineering, University of Sopron, Sopron, 9400 Gyor, Hungary.
Polymers (Basel). 2020 May 7;12(5):1072. doi: 10.3390/polym12051072.
Composite materials reinforced with biofibers and nanomaterials are becoming considerably popular, especially for their light weight, strength, exceptional stiffness, flexural rigidity, damping property, longevity, corrosion, biodegradability, antibacterial, and fire-resistant properties. Beside the traditional thermoplastic and thermosetting polymers, nanoparticles are also receiving attention in terms of their potential to improve the functionality and mechanical performances of biocomposites. These remarkable characteristics have made nanobiocomposite materials convenient to apply in aerospace, mechanical, construction, automotive, marine, medical, packaging, and furniture industries, through providing environmental sustainability. Nanoparticles (TiO, carbon nanotube, rGO, ZnO, and SiO) are easily compatible with other ingredients (matrix polymer and biofibers) and can thus form nanobiocomposites. Nanobiocomposites are exhibiting a higher market volume with the expansion of new technology and green approaches for utilizing biofibers. The performances of nanobiocomposites depend on the manufacturing processes, types of biofibers used, and the matrix polymer (resin). An overview of different natural fibers (vegetable/plants), nanomaterials, biocomposites, nanobiocomposites, and manufacturing methods are discussed in the context of potential application in this review.
用生物纤维和纳米材料增强的复合材料正变得相当流行,特别是因其重量轻、强度高、具有出色的刚度、抗弯刚度、阻尼特性、寿命长、耐腐蚀、可生物降解、抗菌和耐火性能。除了传统的热塑性和热固性聚合物外,纳米颗粒因其改善生物复合材料功能和机械性能的潜力也受到关注。这些显著特性使得纳米生物复合材料通过提供环境可持续性,便于应用于航空航天、机械、建筑、汽车、船舶、医疗、包装和家具行业。纳米颗粒(TiO、碳纳米管、还原氧化石墨烯、ZnO和SiO)很容易与其他成分(基体聚合物和生物纤维)相容,因此可以形成纳米生物复合材料。随着利用生物纤维的新技术和绿色方法的扩展,纳米生物复合材料的市场规模正在扩大。纳米生物复合材料的性能取决于制造工艺、所用生物纤维的类型以及基体聚合物(树脂)。本文综述将在潜在应用的背景下讨论不同天然纤维(植物纤维)、纳米材料、生物复合材料、纳米生物复合材料及制造方法。