Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL, USA.
Mol Autism. 2020 May 11;11(1):32. doi: 10.1186/s13229-020-00339-0.
Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders characterized by impaired social interaction and communication, and repetitive or restricted behaviors. ASD subjects exhibit complex genetic and clinical heterogeneity, thus hindering the discovery of pathophysiological mechanisms. Considering that several ASD-risk genes encode proteins involved in the regulation of synaptic plasticity, neuronal excitability, and neuronal connectivity, one hypothesis that has emerged is that ASD arises from a disruption of the neuronal network activity due to perturbation of the synaptic excitation and inhibition (E/I) balance. The development of induced pluripotent stem cell (iPSC) technology and recent advances in neuronal differentiation techniques provide a unique opportunity to model complex neuronal connectivity and to test the E/I hypothesis of ASD in human-based models. Here, we aim to review the latest advances in studying the different cellular and molecular mechanisms contributing to E/I balance using iPSC-based in vitro models of ASD.
自闭症谱系障碍 (ASD) 是一组神经发育障碍,其特征是社交互动和沟通受损,以及重复或受限的行为。ASD 患者表现出复杂的遗传和临床异质性,从而阻碍了对生理病理机制的发现。鉴于一些 ASD 风险基因编码参与调节突触可塑性、神经元兴奋性和神经元连接的蛋白质,一种假设是 ASD 是由于突触兴奋和抑制 (E/I) 平衡的破坏导致神经元网络活动紊乱而产生的。诱导多能干细胞 (iPSC) 技术的发展和神经元分化技术的最新进展为模拟复杂的神经元连接以及在基于人类的模型中测试 ASD 的 E/I 假说提供了独特的机会。在这里,我们旨在综述使用 ASD 的基于 iPSC 的体外模型研究导致 E/I 平衡的不同细胞和分子机制的最新进展。