Suppr超能文献

胃肠内镜中的机器学习:如何解读一个新兴领域的实用指南。

Machine learning in GI endoscopy: practical guidance in how to interpret a novel field.

机构信息

Department of Electrical Engineering, VCA Group, University of Technology Eindhoven, Eindhoven, Noord-Brabant, The Netherlands.

Department of Gastroenterology and Hepatology, Amsterdam UMC-Locatie AMC, Amsterdam, North Holland, The Netherlands.

出版信息

Gut. 2020 Nov;69(11):2035-2045. doi: 10.1136/gutjnl-2019-320466. Epub 2020 May 11.

Abstract

There has been a vast increase in GI literature focused on the use of machine learning in endoscopy. The relative novelty of this field poses a challenge for reviewers and readers of GI journals. To appreciate scientific quality and novelty of machine learning studies, understanding of the technical basis and commonly used techniques is required. Clinicians often lack this technical background, while machine learning experts may be unfamiliar with clinical relevance and implications for daily practice. Therefore, there is an increasing need for a multidisciplinary, international evaluation on how to perform high-quality machine learning research in endoscopy. This review aims to provide guidance for readers and reviewers of peer-reviewed GI journals to allow critical appraisal of the most relevant quality requirements of machine learning studies. The paper provides an overview of common trends and their potential pitfalls and proposes comprehensive quality requirements in six overarching themes: terminology, data, algorithm description, experimental setup, interpretation of results and machine learning in clinical practice.

摘要

在胃肠道领域,聚焦于机器学习在内镜中的应用的文献大量增加。该领域的相对新颖性给胃肠道期刊的审稿人和读者带来了挑战。为了评估机器学习研究的科学性和新颖性,需要理解其技术基础和常用技术。临床医生通常缺乏这种技术背景,而机器学习专家可能不熟悉临床相关性及其对日常实践的影响。因此,对于如何在内镜中进行高质量的机器学习研究,需要进行多学科、国际化的评估。本文旨在为同行评议的胃肠道期刊的读者和审稿人提供指导,以便对机器学习研究的最相关质量要求进行批判性评估。本文概述了常见趋势及其潜在陷阱,并提出了六个总体主题的综合质量要求:术语、数据、算法描述、实验设置、结果解释和机器学习在临床实践中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1429/7569393/10d1d2b6a2d8/gutjnl-2019-320466f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验