Suppr超能文献

利用机器学习识别注意力缺陷/多动障碍接受心理社会治疗的预测因素。

Leveraging Machine Learning to Identify Predictors of Receiving Psychosocial Treatment for Attention Deficit/Hyperactivity Disorder.

机构信息

Department of Psychology, Florida International University, Miami, USA.

Center for Children and Families, Florida International University, Miami, USA.

出版信息

Adm Policy Ment Health. 2020 Sep;47(5):680-692. doi: 10.1007/s10488-020-01045-y.

Abstract

This study aimed to identify factors associated with receiving psychosocial treatment for ADHD in a nationally representative sample. Participants were 6630 youth with a parent-reported diagnosis of ADHD from the 2016-2017 National Survey of Children's Health. Machine learning analyses were performed to identify factors associated with receipt of psychosocial treatment for ADHD. We examined potentially associated factors in the broad categories of variables hypothesized to affect problem recognition (e.g., severity, mental health comorbidities); the decision to seek treatment; service selection (e.g., insurance coverage) and service use. We found that three machine learning models unanimously identified parent-reported ADHD severity (mild vs. moderate/severe) as the factor that best distinguishes between children who receive psychosocial treatment for ADHD and those who do not. Receive operating characteristic curve analysis revealed the following model performance: classification and regression tree analysis (area under the curve; AUC = .68); an ensemble model (AUC = .71); and a deep, multi-layer neural network (AUC = .72), as well as comparison to a logistic regression model (AUC = .69). Further, insurance coverage of mental/behavioral health needs emerged as a salient factor associated with the receipt of psychosocial treatment. Machine learning models identified risk and protective factors that predicted the receipt of psychosocial treatment for ADHD, such as ADHD severity and health insurance coverage.

摘要

这项研究旨在确定在全国代表性样本中接受 ADHD 心理社会治疗的相关因素。参与者为 6630 名来自 2016-2017 年全国儿童健康调查的家长报告 ADHD 诊断的青少年。采用机器学习分析来确定与 ADHD 心理社会治疗相关的因素。我们检查了广泛的变量类别中可能相关的因素,这些因素假设会影响问题识别(例如,严重程度、精神健康共病);寻求治疗的决定;服务选择(例如,保险范围)和服务使用。我们发现,三个机器学习模型一致认为,家长报告的 ADHD 严重程度(轻度与中度/重度)是区分接受 ADHD 心理社会治疗和不接受治疗的儿童的最佳因素。接收者操作特征曲线分析显示了以下模型性能:分类和回归树分析(曲线下面积;AUC=.68);集成模型(AUC=.71);以及深度、多层神经网络(AUC=.72),以及与逻辑回归模型(AUC=.69)的比较。此外,心理健康/行为健康需求的保险覆盖范围也成为与接受心理社会治疗相关的重要因素。机器学习模型确定了预测 ADHD 心理社会治疗接受度的风险和保护因素,例如 ADHD 严重程度和健康保险覆盖范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验