School of Management, China Institute for Studies in Energy Policy, Collaborative Innovation Center for Energy Economics and Energy Policy, Xiamen University, Fujian 361005, China; Belt and Road Research Institute, Xiamen University, Fujian 361005, China.
School of Management, China Institute for Studies in Energy Policy, Collaborative Innovation Center for Energy Economics and Energy Policy, Xiamen University, Fujian 361005, China.
Sci Total Environ. 2020 Aug 15;730:139000. doi: 10.1016/j.scitotenv.2020.139000. Epub 2020 Apr 30.
The transport sector has become one of the major economic, huge fossil fuel energy consumption, and carbon dioxide (CO) emitting sector of Pakistan. This study applies the logarithmic mean Divisia index (LMDI) and Tapio's decoupling approach to estimate decoupling state and mitigation potential of CO emissions from the transport sector during 1984-2018. LMDI technique is applied to detect the influencing variables (i.e. carbon coefficient, fuel consumption, total energy consumption, and turn over economy), which oversee CO emissions. The outcomes show that CO coefficient effect is the factor which is decreasing CO emissions while economic growth (EG) effect is the factor which is growing CO emissions. The decoupling index is also applied to influencing factors which reflect the EG factors on CO emissions from the transport sector. The consequences confirm that during 1984-2018, the CO emissions show an expensive coupling with EG. Weak decoupling occurred only in the sub-periods 1999-2003, 2004-2008, and 2009-2013. Similarly, the CO emissions occurred from only three decoupling grades. Furthermore, a mitigation model based on the above impacting variables estimates the mitigation rate of CO emissions and showed that the CO mitigation seemed in 1999-2003, 2004-2008, and 2009-2013. Finally, forecasting outcomes of Tapio decoupling index show a weak decoupling during 2018-2030. Therefore, based on the empirical outcomes, this study puts forward a few policy suggestions to efficiently enhance the decoupling between Pakistan's transport CO emissions and EG.
交通部门已成为巴基斯坦主要的经济部门之一,其能源消耗巨大,二氧化碳(CO)排放量也很高。本研究应用对数平均迪氏分解指数(LMDI)和塔皮奥脱钩方法,估算 1984 年至 2018 年期间交通部门 CO 排放的脱钩状态和减排潜力。LMDI 技术用于检测影响 CO 排放的变量(即碳系数、燃料消耗、总能源消耗和经济周转率)。结果表明,CO 系数效应是降低 CO 排放的因素,而经济增长(EG)效应是增加 CO 排放的因素。脱钩指数也应用于反映交通部门 CO 排放与 EG 因素的影响因素。结果证实,1984 年至 2018 年期间,CO 排放与 EG 之间呈昂贵的耦合关系。仅在 1999-2003 年、2004-2008 年和 2009-2013 年这三个子期间出现了弱脱钩。同样,CO 排放仅来自三个脱钩等级。此外,基于上述影响变量的减排模型估计了 CO 减排率,并表明 1999-2003 年、2004-2008 年和 2009-2013 年 CO 减排情况较好。最后,Tapio 脱钩指数的预测结果显示,2018-2030 年期间脱钩程度较弱。因此,根据实证结果,本研究提出了一些政策建议,以有效提高巴基斯坦交通 CO 排放与 EG 之间的脱钩程度。