Manchester Institute of Biotechnology, The University of Manchester, UK.
Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, The University of Manchester, UK.
FEBS J. 2021 Jul;288(13):4115-4128. doi: 10.1111/febs.15704. Epub 2021 Jan 26.
Fungal lytic polysaccharide monooxygenases (LPMOs) depolymerise crystalline cellulose and hemicellulose, supporting the utilisation of lignocellulosic biomass as a feedstock for biorefinery and biomanufacturing processes. Recent investigations have shown that H O is the most efficient cosubstrate for LPMOs. Understanding the reaction mechanism of LPMOs with H O is therefore of importance for their use in biotechnological settings. Here, we have employed a variety of spectroscopic and biochemical approaches to probe the reaction of the fungal LPMO9C from N. crassa using H O as a cosubstrate and xyloglucan as a polysaccharide substrate. We show that a single 'priming' electron transfer reaction from the cellobiose dehydrogenase partner protein supports up to 20 H O -driven catalytic cycles of a fungal LPMO. Using rapid mixing stopped-flow spectroscopy, alongside electron paramagnetic resonance and UV-Vis spectroscopy, we reveal how H O and xyloglucan interact with the enzyme and investigate transient species that form uncoupled pathways of NcLPMO9C. Our study shows how the H O cosubstrate supports fungal LPMO catalysis and leaves the enzyme in the reduced Cu state following a single enzyme turnover, thus preventing the need for external protons and electrons from reducing agents or cellobiose dehydrogenase and supporting the binding of H O for further catalytic steps. We observe that the presence of the substrate xyloglucan stabilises the Cu state of LPMOs, which may prevent the formation of uncoupled side reactions.
真菌溶细胞多糖单加氧酶(LPMOs)可分解结晶纤维素和半纤维素,使木质纤维素生物质能够作为生物炼制和生物制造过程的原料。最近的研究表明,H 2 O 2 是 LPMOs 最有效的共底物。因此,了解 LPMOs 与 H 2 O 2 的反应机制对于它们在生物技术中的应用非常重要。在这里,我们采用了多种光谱学和生物化学方法,研究了 N. crassa 中的真菌 LPMO9C 在 H 2 O 2 作为共底物和木葡聚糖作为多糖底物的情况下的反应。我们表明,来自细胞色素 c 氧化还原酶伴侣蛋白的单个“引发”电子转移反应支持真菌 LPMO 多达 20 次 H 2 O 2 驱动的催化循环。通过快速混合停流光谱学、电子顺磁共振和紫外可见光谱学,我们揭示了 H 2 O 2 和木葡聚糖如何与酶相互作用,并研究了形成 NcLPMO9C 非偶联途径的瞬态物种。我们的研究表明 H 2 O 2 共底物如何支持真菌 LPMO 催化,并使酶在单个酶周转后保持还原态 Cu,从而无需来自还原剂或细胞色素 c 氧化还原酶的外部质子和电子,并且支持 H 2 O 2 结合以进行进一步的催化步骤。我们观察到,底物木葡聚糖的存在稳定了 LPMOs 的 Cu 状态,这可能防止了非偶联副反应的形成。