Suppr超能文献

真菌溶菌多糖单加氧酶的 H O 驱动催化机制研究进展。

Insights into the H O -driven catalytic mechanism of fungal lytic polysaccharide monooxygenases.

机构信息

Manchester Institute of Biotechnology, The University of Manchester, UK.

Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, The University of Manchester, UK.

出版信息

FEBS J. 2021 Jul;288(13):4115-4128. doi: 10.1111/febs.15704. Epub 2021 Jan 26.

Abstract

Fungal lytic polysaccharide monooxygenases (LPMOs) depolymerise crystalline cellulose and hemicellulose, supporting the utilisation of lignocellulosic biomass as a feedstock for biorefinery and biomanufacturing processes. Recent investigations have shown that H O is the most efficient cosubstrate for LPMOs. Understanding the reaction mechanism of LPMOs with H O is therefore of importance for their use in biotechnological settings. Here, we have employed a variety of spectroscopic and biochemical approaches to probe the reaction of the fungal LPMO9C from N. crassa using H O as a cosubstrate and xyloglucan as a polysaccharide substrate. We show that a single 'priming' electron transfer reaction from the cellobiose dehydrogenase partner protein supports up to 20 H O -driven catalytic cycles of a fungal LPMO. Using rapid mixing stopped-flow spectroscopy, alongside electron paramagnetic resonance and UV-Vis spectroscopy, we reveal how H O and xyloglucan interact with the enzyme and investigate transient species that form uncoupled pathways of NcLPMO9C. Our study shows how the H O cosubstrate supports fungal LPMO catalysis and leaves the enzyme in the reduced Cu state following a single enzyme turnover, thus preventing the need for external protons and electrons from reducing agents or cellobiose dehydrogenase and supporting the binding of H O for further catalytic steps. We observe that the presence of the substrate xyloglucan stabilises the Cu state of LPMOs, which may prevent the formation of uncoupled side reactions.

摘要

真菌溶细胞多糖单加氧酶(LPMOs)可分解结晶纤维素和半纤维素,使木质纤维素生物质能够作为生物炼制和生物制造过程的原料。最近的研究表明,H 2 O 2 是 LPMOs 最有效的共底物。因此,了解 LPMOs 与 H 2 O 2 的反应机制对于它们在生物技术中的应用非常重要。在这里,我们采用了多种光谱学和生物化学方法,研究了 N. crassa 中的真菌 LPMO9C 在 H 2 O 2 作为共底物和木葡聚糖作为多糖底物的情况下的反应。我们表明,来自细胞色素 c 氧化还原酶伴侣蛋白的单个“引发”电子转移反应支持真菌 LPMO 多达 20 次 H 2 O 2 驱动的催化循环。通过快速混合停流光谱学、电子顺磁共振和紫外可见光谱学,我们揭示了 H 2 O 2 和木葡聚糖如何与酶相互作用,并研究了形成 NcLPMO9C 非偶联途径的瞬态物种。我们的研究表明 H 2 O 2 共底物如何支持真菌 LPMO 催化,并使酶在单个酶周转后保持还原态 Cu,从而无需来自还原剂或细胞色素 c 氧化还原酶的外部质子和电子,并且支持 H 2 O 2 结合以进行进一步的催化步骤。我们观察到,底物木葡聚糖的存在稳定了 LPMOs 的 Cu 状态,这可能防止了非偶联副反应的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0743/8359147/763a4eb2b5df/FEBS-288-4115-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验