Suppr超能文献

通过心电图信号分析自动检测心血管疾病:一种深度学习系统。

Automated detection of cardiovascular disease by electrocardiogram signal analysis: a deep learning system.

作者信息

Zhang Xin, Gu Kai, Miao Shumei, Zhang Xiaoliang, Yin Yuechuchu, Wan Cheng, Yu Yun, Hu Jie, Wang Zhongmin, Shan Tao, Jing Shenqi, Wang Wenming, Ge Yun, Chen Yin, Guo Jianjun, Liu Yun

机构信息

Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.

Department of Information, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.

出版信息

Cardiovasc Diagn Ther. 2020 Apr;10(2):227-235. doi: 10.21037/cdt.2019.12.10.

Abstract

Automated electrocardiogram (ECG) diagnosis could be a useful aid for clinical use. We applied a deep learning method to build a system for automated detection and classification of ECG signals. We first trained a convolutional neural network (CNN) to detect cardiovascular disease in ECG signals using a training data set of 259,789 ECG signals collected from the cardiac function rooms of a tertiary care hospital. The CNN classification was validated using an independent test data set of 18,018 ECG signals. The labels used covered >90% of clinical diagnoses. The system grouped ECGs into 18 classifications-17 different types of abnormalities and normal ECG. The overall accuracy of the model was tested and found to be close to 95%; the accuracy for diagnosis of normal rhythm/atrial fibrillation was 99.15%. The proposed CNN model could help reduce misdiagnosis and missed diagnosis in primary care settings and also improve efficiency and save manpower cost for large general hospitals.

摘要

自动心电图(ECG)诊断对于临床应用可能是一种有用的辅助手段。我们应用深度学习方法构建了一个用于自动检测和分类ECG信号的系统。我们首先使用从一家三级护理医院的心功能室收集的259,789个ECG信号的训练数据集,训练了一个卷积神经网络(CNN)来检测ECG信号中的心血管疾病。使用18,018个ECG信号的独立测试数据集对CNN分类进行了验证。所使用的标签涵盖了超过90%的临床诊断。该系统将ECG分为18种分类——17种不同类型的异常和正常ECG。对模型的总体准确率进行了测试,发现接近95%;正常节律/心房颤动的诊断准确率为99.15%。所提出的CNN模型有助于减少基层医疗环境中的误诊和漏诊,还能提高大型综合医院的效率并节省人力成本。

相似文献

2
A deep convolutional neural network model to classify heartbeats.一种用于分类心跳的深度卷积神经网络模型。
Comput Biol Med. 2017 Oct 1;89:389-396. doi: 10.1016/j.compbiomed.2017.08.022. Epub 2017 Aug 24.
4
Explainable artificial intelligence for heart rate variability in ECG signal.用于心电图信号中心率变异性的可解释人工智能
Healthc Technol Lett. 2020 Dec 9;7(6):146-154. doi: 10.1049/htl.2020.0033. eCollection 2020 Dec.

引用本文的文献

本文引用的文献

3
Machine learning in the electrocardiogram.心电图中的机器学习。
J Electrocardiol. 2019 Nov-Dec;57S:S61-S64. doi: 10.1016/j.jelectrocard.2019.08.008. Epub 2019 Aug 8.
6
A novel application of deep learning for single-lead ECG classification.深度学习在单导联心电图分类中的新应用。
Comput Biol Med. 2018 Aug 1;99:53-62. doi: 10.1016/j.compbiomed.2018.05.013. Epub 2018 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验