Suppr超能文献

玉米 ZmPT7 通过磷酸化调节磷的吸收和再分配。

Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation.

机构信息

State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Maize Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.

出版信息

Plant Biotechnol J. 2020 Dec;18(12):2406-2419. doi: 10.1111/pbi.13414. Epub 2020 Jun 5.

Abstract

Phosphorus, an essential mineral macronutrient, is a major constituent of fertilizers for maize (Zea mays L.) production. However, the molecular mechanisms of phosphate (Pi) acquisition in maize plants and its redistribution remain unclear. This study presents the functional characterization of ZmPT7 in Pi uptake and redistribution in maize. The ZmPT7 was expressed in roots and leaves, and induced during Pi starvation. The ZmPT7 complemented the Pi-uptake deficiency of yeast mutant phoΔnull and Arabidopsis mutant pht1;1Δ4Δ, indicating that ZmPT7 functioned as a Pi transporter. We generated zmpt7 mutants by CRISPR/Cas9 and ZmPT7-overexpressing lines. The zmpt7 mutants showed reduced, whereas the ZmPT7-overexpressing lines displayed increased Pi-uptake capacity and Pi redistribution from old to young leaves, demonstrating that ZmPT7 played central roles in Pi acquisition and Pi redistribution from old to young leaves. The ZmCK2 kinases phosphorylated ZmPT7 at Ser-521 in old maize leaves, which enhanced transport activity of ZmPT7. The Ser-520 of Arabidopsis AtPHT1;1, a conserved residue of ZmPT7 Ser-521, was also phosphorylated by AtCK2 kinase, and the mutation of Ser-520 to Glu (phosphorylation mimic) yielded enhanced transport activity of AtPHT1;1. Taken together, these results indicate that ZmPT7 plays important roles in Pi acquisition and redistribution, and its transport activity is modulated by phosphorylation.

摘要

磷是一种必需的大量矿物质营养元素,是玉米(Zea mays L.)生产用肥料的主要成分。然而,玉米植株中磷的吸收和再分配的分子机制仍不清楚。本研究对玉米中 ZmPT7 在磷吸收和再分配中的功能进行了特征描述。ZmPT7 在根和叶中表达,并在磷饥饿时诱导表达。ZmPT7 互补了酵母突变体 phoΔnull 和拟南芥突变体 pht1;1Δ4Δ 的磷吸收缺陷,表明 ZmPT7 作为磷转运蛋白发挥功能。我们通过 CRISPR/Cas9 生成了 zmpt7 突变体和 ZmPT7 过表达系。ZmPT7 突变体表现出磷吸收能力降低,而 ZmPT7 过表达系表现出磷吸收能力增强和磷从老叶向嫩叶再分配增加,表明 ZmPT7 在磷吸收和磷从老叶向嫩叶再分配中起核心作用。ZmCK2 激酶在老玉米叶中磷酸化 ZmPT7 的 Ser-521,增强了 ZmPT7 的转运活性。拟南芥 AtPHT1;1 的保守残基 Ser-521 处的 AtCK2 激酶也磷酸化了 AtPHT1;1 的 Ser-520,而将 Ser-520 突变为 Glu(磷酸化模拟物)则增强了 AtPHT1;1 的转运活性。综上所述,这些结果表明 ZmPT7 在磷吸收和再分配中起重要作用,其转运活性受磷酸化调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a595/11386612/f75e0eb81c68/PBI-18-2406-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验