Gallagher-Jones Marcus, Bustillo Karen C, Ophus Colin, Richards Logan S, Ciston Jim, Lee Sangho, Minor Andrew M, Rodriguez Jose A
Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
IUCrJ. 2020 Apr 10;7(Pt 3):490-499. doi: 10.1107/S2052252520004030. eCollection 2020 May 1.
Nanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, scanning nanobeam electron diffraction extends the reach of nanocrystallography and in principle obviates the need for diffraction from large portions of one or more crystals. Scanning nanobeam electron diffraction is now applied to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, thousands of sparse diffraction patterns over multiple orientations of a given crystal are recorded. Each pattern is assigned to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. Using this diffraction tomogram, intensities can be digitally extracted from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. It is demonstrated that merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based solutions that can be refined to atomic resolution, analogous to structures determined by selected-area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography.
纳米晶体学改变了我们探究蛋白质、肽、有机分子和材料原子结构的能力。通过探测纳米晶体中小于10 nm有序区域的原子级细节,扫描纳米束电子衍射扩展了纳米晶体学的研究范围,原则上无需从一个或多个晶体的大部分区域进行衍射。扫描纳米束电子衍射现已用于从对束敏感的肽纳米晶体的数字定义区域确定原子结构。使用直接电子探测器,记录给定晶体多个取向的数千个稀疏衍射图案。每个图案都被指定到单个纳米晶体上具有轴向、横向和角坐标的特定位置。这种方法产生了一组图案,它们代表了倒易空间角楔上的倾斜系列:扫描纳米束衍射断层图。利用这个衍射断层图,可以从实空间或衍射空间扫描的任何所需区域数字提取强度,而不包括所有其他扫描点。可以合并来自一个晶体或多个晶体多个区域的强度,以提高数据完整性并减轻缺失楔的影响。结果表明,来自OsPYL/RCAR5蛋白一个片段的两个晶体数字定义区域的合并强度产生了基于片段的解决方案,这些解决方案可以精修至原子分辨率,类似于通过选区电子衍射确定的结构。扫描纳米束衍射断层扫描能够从纳米晶体的数字轮廓区域确定原子结构,在纳米晶体学方面开辟了新天地。