Suppr超能文献

基于注意力机制的集成深度学习蛋白质相互作用网络重建

Protein Interaction Network Reconstruction Through Ensemble Deep Learning With Attention Mechanism.

作者信息

Li Feifei, Zhu Fei, Ling Xinghong, Liu Quan

机构信息

School of Computer Science and Technology, Soochow University, Suzhou, China.

Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou, China.

出版信息

Front Bioeng Biotechnol. 2020 May 5;8:390. doi: 10.3389/fbioe.2020.00390. eCollection 2020.

Abstract

Protein interactions play an essential role in studying living systems and life phenomena. A considerable amount of literature has been published on analyzing and predicting protein interactions, such as support vector machine method, homology-based method and similarity-based method, each has its pros and cons. Most existing methods for predicting protein interactions require prior domain knowledge, making it difficult to effectively extract protein features. Single method is dissatisfactory in predicting protein interactions, declaring the need for a comprehensive method that combines the advantages of various methods. On this basis, a deep ensemble learning method called EnAmDNN (Ensemble Deep Neural Networks with Attention Mechanism) is proposed to predict protein interactions which is an appropriate candidate for comprehensive learning, combining multiple models, and considering the advantages of various methods. Particularly, it encode protein sequences by the local descriptor, auto covariance, conjoint triad, pseudo amino acid composition and combine the vector representation of each protein in the protein interaction network. Then it takes advantage of the multi-layer convolutional neural networks to automatically extract protein features and construct an attention mechanism to analyze deep-seated relationships between proteins. We set up four different structures of deep learning models. In the ensemble learning model, second layer data sets are generated with five-fold cross validation from basic learners, then predict the protein interaction network by combining 16 models. Results on five independent PPI data sets demonstrate that EnAmDNN achieves superior prediction performance than other comparing methods.

摘要

蛋白质相互作用在研究生命系统和生命现象中起着至关重要的作用。关于分析和预测蛋白质相互作用已经发表了大量文献,例如支持向量机方法、基于同源性的方法和基于相似性的方法,每种方法都有其优缺点。大多数现有的预测蛋白质相互作用的方法都需要先验领域知识,这使得难以有效地提取蛋白质特征。单一方法在预测蛋白质相互作用方面并不令人满意,这表明需要一种综合方法来结合各种方法的优点。在此基础上,提出了一种名为EnAmDNN(带有注意力机制的集成深度神经网络)的深度集成学习方法来预测蛋白质相互作用,它是综合学习、结合多个模型并考虑各种方法优点的合适候选方法。特别是,它通过局部描述符、自协方差、三联体组合、伪氨基酸组成对蛋白质序列进行编码,并结合蛋白质相互作用网络中每个蛋白质的向量表示。然后利用多层卷积神经网络自动提取蛋白质特征,并构建注意力机制来分析蛋白质之间的深层次关系。我们设置了四种不同结构的深度学习模型。在集成学习模型中,通过对基础学习器进行五折交叉验证生成第二层数据集,然后结合16个模型预测蛋白质相互作用网络。在五个独立的蛋白质-蛋白质相互作用(PPI)数据集上的结果表明,EnAmDNN比其他比较方法具有更优的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/7215070/6fdafd9e8393/fbioe-08-00390-g0001.jpg

相似文献

1
Protein Interaction Network Reconstruction Through Ensemble Deep Learning With Attention Mechanism.
Front Bioeng Biotechnol. 2020 May 5;8:390. doi: 10.3389/fbioe.2020.00390. eCollection 2020.
2
SDNN-PPI: self-attention with deep neural network effect on protein-protein interaction prediction.
BMC Genomics. 2022 Jun 27;23(1):474. doi: 10.1186/s12864-022-08687-2.
3
DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction.
BMC Genomics. 2022 Aug 4;23(1):555. doi: 10.1186/s12864-022-08772-6.
5
Prediction of RNA-protein interactions by combining deep convolutional neural network with feature selection ensemble method.
J Theor Biol. 2019 Jan 14;461:230-238. doi: 10.1016/j.jtbi.2018.10.029. Epub 2018 Oct 12.
6
Multimodal deep representation learning for protein interaction identification and protein family classification.
BMC Bioinformatics. 2019 Dec 2;20(Suppl 16):531. doi: 10.1186/s12859-019-3084-y.
7
Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
Bioinformatics. 2019 Jan 15;35(2):309-318. doi: 10.1093/bioinformatics/bty535.
9
A new ensemble residual convolutional neural network for remaining useful life estimation.
Math Biosci Eng. 2019 Jan 28;16(2):862-880. doi: 10.3934/mbe.2019040.
10
Protein Interaction Network Reconstruction with a Structural Gated Attention Deep Model by Incorporating Network Structure Information.
J Chem Inf Model. 2022 Jan 24;62(2):258-273. doi: 10.1021/acs.jcim.1c00982. Epub 2022 Jan 10.

引用本文的文献

1
TCellPredX: A Novel Approach for Accurate Prediction of Hepatitis C Virus Linear T Cell Epitopes.
ACS Omega. 2024 Dec 16;9(52):51494-51507. doi: 10.1021/acsomega.4c08715. eCollection 2024 Dec 31.
4
HPIPred: Host-pathogen interactome prediction with phenotypic scoring.
Comput Struct Biotechnol J. 2022 Nov 21;20:6534-6542. doi: 10.1016/j.csbj.2022.11.026. eCollection 2022.
5
Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge.
Front Bioinform. 2021 Sep 22;1:746712. doi: 10.3389/fbinf.2021.746712. eCollection 2021.
7
Protein Function Analysis through Machine Learning.
Biomolecules. 2022 Sep 6;12(9):1246. doi: 10.3390/biom12091246.
8
Molecular Modelling Hurdle in the Next-Generation Sequencing Era.
Int J Mol Sci. 2022 Jun 28;23(13):7176. doi: 10.3390/ijms23137176.
9
SDNN-PPI: self-attention with deep neural network effect on protein-protein interaction prediction.
BMC Genomics. 2022 Jun 27;23(1):474. doi: 10.1186/s12864-022-08687-2.
10
An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning.
Front Genet. 2022 Jan 27;12:760299. doi: 10.3389/fgene.2021.760299. eCollection 2021.

本文引用的文献

1
Dual Convolutional Neural Networks With Attention Mechanisms Based Method for Predicting Disease-Related lncRNA Genes.
Front Genet. 2019 May 3;10:416. doi: 10.3389/fgene.2019.00416. eCollection 2019.
3
Protein-protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique.
Bioinformatics. 2019 Jul 15;35(14):2395-2402. doi: 10.1093/bioinformatics/bty995.
4
Predicting protein-protein interactions by fusing various Chou's pseudo components and using wavelet denoising approach.
J Theor Biol. 2019 Feb 7;462:329-346. doi: 10.1016/j.jtbi.2018.11.011. Epub 2018 Nov 16.
5
Predicting protein-protein interactions through sequence-based deep learning.
Bioinformatics. 2018 Sep 1;34(17):i802-i810. doi: 10.1093/bioinformatics/bty573.
6
Extracting chemical-protein relations using attention-based neural networks.
Database (Oxford). 2018 Jan 1;2018:bay102. doi: 10.1093/database/bay102.
7
MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
Bioinformatics. 2017 Dec 15;33(24):3909-3916. doi: 10.1093/bioinformatics/btx496.
8
Sequence-based prediction of protein protein interaction using a deep-learning algorithm.
BMC Bioinformatics. 2017 May 25;18(1):277. doi: 10.1186/s12859-017-1700-2.
9
DeepPPI: Boosting Prediction of Protein-Protein Interactions with Deep Neural Networks.
J Chem Inf Model. 2017 Jun 26;57(6):1499-1510. doi: 10.1021/acs.jcim.7b00028. Epub 2017 May 26.
10
Predicting Protein-Protein Interactions from the Molecular to the Proteome Level.
Chem Rev. 2016 Apr 27;116(8):4884-909. doi: 10.1021/acs.chemrev.5b00683. Epub 2016 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验