Suppr超能文献

基于深度学习的眼眶 CT 图像中眼球容积定量的全自动分割。

Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning.

机构信息

From the Departments of Electrical and Computer Engineering (L.U., A.B.).

Medical Imaging (L.U., B.W., L.M., M.H., M.I.A., A.B.).

出版信息

AJNR Am J Neuroradiol. 2020 Jun;41(6):1061-1069. doi: 10.3174/ajnr.A6538. Epub 2020 May 21.

Abstract

BACKGROUND AND PURPOSE

Fast and accurate quantification of globe volumes in the event of an ocular trauma can provide clinicians with valuable diagnostic information. In this work, an automated workflow using a deep learning-based convolutional neural network is proposed for prediction of globe contours and their subsequent volume quantification in CT images of the orbits.

MATERIALS AND METHODS

An automated workflow using a deep learning -based convolutional neural network is proposed for prediction of globe contours in CT images of the orbits. The network, 2D Modified Residual UNET (MRes-UNET2D), was trained on axial CT images from 80 subjects with no imaging or clinical findings of globe injuries. The predicted globe contours and volume estimates were compared with manual annotations by experienced observers on 2 different test cohorts.

RESULTS

On the first test cohort ( = 18), the average Dice, precision, and recall scores were 0.95, 96%, and 95%, respectively. The average 95% Hausdorff distance was only 1.5 mm, with a 5.3% error in globe volume estimates. No statistically significant differences ( = .72) were observed in the median globe volume estimates from our model and the ground truth. On the second test cohort ( = 9) in which a neuroradiologist and 2 residents independently marked the globe contours, MRes-UNET2D (Dice = 0.95) approached human interobserver variability (Dice = 0.94). We also demonstrated the utility of inter-globe volume difference as a quantitative marker for trauma in 3 subjects with known globe injuries.

CONCLUSIONS

We showed that with fast prediction times, we can reliably detect and quantify globe volumes in CT images of the orbits across a variety of acquisition parameters.

摘要

背景与目的

在眼外伤的情况下,快速准确地量化眼球体积可以为临床医生提供有价值的诊断信息。在这项工作中,我们提出了一种使用基于深度学习的卷积神经网络的自动化工作流程,用于预测眼眶 CT 图像中的眼球轮廓及其随后的体积量化。

材料与方法

我们提出了一种使用基于深度学习的卷积神经网络的自动化工作流程,用于预测眼眶 CT 图像中的眼球轮廓。该网络为 2D 改进型残差 UNET(MRes-UNET2D),是在 80 名无眼球损伤影像学或临床发现的受试者的轴位 CT 图像上进行训练的。预测的眼球轮廓和体积估计值与有经验的观察者在两个不同的测试队列上的手动注释进行了比较。

结果

在第一个测试队列(n = 18)中,平均 Dice、精度和召回率分别为 0.95、96%和 95%。平均 95%Hausdorff 距离仅为 1.5 毫米,眼球体积估计值的误差为 5.3%。从我们的模型和真实值中位数的眼球体积估计值来看,没有观察到统计学上的显著差异(P =.72)。在第二个测试队列(n = 9)中,神经放射科医生和 2 名住院医师独立标记了眼球轮廓,MRes-UNET2D(Dice = 0.95)接近人类观察者间的可变性(Dice = 0.94)。我们还证明了眼球间体积差异作为已知眼球损伤 3 名受试者创伤的定量标志物的效用。

结论

我们表明,通过快速预测时间,我们可以在各种采集参数的眼眶 CT 图像中可靠地检测和量化眼球体积。

相似文献

1
Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning.
AJNR Am J Neuroradiol. 2020 Jun;41(6):1061-1069. doi: 10.3174/ajnr.A6538. Epub 2020 May 21.
4
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
Med Phys. 2019 Feb;46(2):576-589. doi: 10.1002/mp.13300. Epub 2018 Dec 17.
6
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
Med Phys. 2020 Jun;47(6):2413-2426. doi: 10.1002/mp.14134. Epub 2020 Apr 8.
7
Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging.
AJNR Am J Neuroradiol. 2019 Aug;40(8):1282-1290. doi: 10.3174/ajnr.A6138. Epub 2019 Jul 25.
8
Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning.
Magn Reson Med. 2020 Oct;84(4):2204-2218. doi: 10.1002/mrm.28257. Epub 2020 Mar 13.
9
Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images.
Comput Methods Programs Biomed. 2020 Jul;191:105387. doi: 10.1016/j.cmpb.2020.105387. Epub 2020 Feb 15.

引用本文的文献

2
Development of a Deep Learning Model for Retinal Hemorrhage Detection on Head Computed Tomography in Young Children.
JAMA Netw Open. 2023 Jun 1;6(6):e2319420. doi: 10.1001/jamanetworkopen.2023.19420.
4
Orbital and eyelid diseases: The next breakthrough in artificial intelligence?
Front Cell Dev Biol. 2022 Nov 18;10:1069248. doi: 10.3389/fcell.2022.1069248. eCollection 2022.
5

本文引用的文献

1
Occult globe rupture: diagnostic and treatment challenge.
Surv Ophthalmol. 2018 Sep-Oct;63(5):694-699. doi: 10.1016/j.survophthal.2018.04.001. Epub 2018 Apr 9.
2
White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks.
Neuroimage Clin. 2017 Dec 20;17:918-934. doi: 10.1016/j.nicl.2017.12.022. eCollection 2018.
3
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
4
Efficient orbital structures segmentation with prior anatomical knowledge.
J Med Imaging (Bellingham). 2017 Jul;4(3):034501. doi: 10.1117/1.JMI.4.3.034501. Epub 2017 Jul 22.
6
Large scale deep learning for computer aided detection of mammographic lesions.
Med Image Anal. 2017 Jan;35:303-312. doi: 10.1016/j.media.2016.07.007. Epub 2016 Aug 2.
7
Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images.
IEEE Trans Med Imaging. 2016 May;35(5):1273-1284. doi: 10.1109/TMI.2016.2526689. Epub 2016 Feb 8.
8
Robust optic nerve segmentation on clinically acquired computed tomography.
J Med Imaging (Bellingham). 2014 Oct;1(3):034006. doi: 10.1117/1.JMI.1.3.034006. Epub 2014 Dec 17.
9
CT of globe rupture: analysis and frequency of findings.
AJR Am J Roentgenol. 2014 May;202(5):1100-7. doi: 10.2214/AJR.13.11010.
10
Non-local statistical label fusion for multi-atlas segmentation.
Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验