Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Int J Environ Res Public Health. 2020 May 18;17(10):3535. doi: 10.3390/ijerph17103535.
We applied a generalized SEIR epidemiological model to the recent SARS-CoV-2 outbreak in the world, with a focus on Italy and its Lombardy, Piedmont, and Veneto regions. We focused on the application of a stochastic approach in fitting the model parameters using a Particle Swarm Optimization (PSO) solver, to improve the reliability of predictions in the medium term (30 days). We analyzed the official data and the predicted evolution of the epidemic in the Italian regions, and we compared the results with the data and predictions of Spain and South Korea. We linked the model equations to the changes in people's mobility, with reference to Google's COVID-19 Community Mobility Reports. We discussed the effectiveness of policies taken by different regions and countries and how they have an impact on past and future infection scenarios.
我们应用广义 SEIR 传染病模型来研究最近在全球范围内爆发的 SARS-CoV-2 疫情,重点关注意大利及其伦巴第、皮埃蒙特和威尼托地区。我们专注于应用随机方法,使用粒子群优化(PSO)求解器来拟合模型参数,以提高中期(30 天)预测的可靠性。我们分析了意大利地区的官方数据和疫情的预测演变,并将结果与西班牙和韩国的数据和预测进行了比较。我们将模型方程与人们的流动性变化联系起来,参考了谷歌的 COVID-19 社区流动性报告。我们讨论了不同地区和国家采取的政策的有效性,以及它们如何对过去和未来的感染情况产生影响。