Suppr超能文献

深度学习在医学图像分布外样本检测中的响应分数

Response score of deep learning for out-of-distribution sample detection of medical images.

作者信息

Gao Long, Wu Shandong

机构信息

College of Computer, National University of Defense Technology, Changsha 410073, China; Department of Radiology, School of Medicine, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA.

Department of Radiology, School of Medicine, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA; Department of Biomedical Informatics, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA; Intelligent Systems Program, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA.

出版信息

J Biomed Inform. 2020 Jul;107:103442. doi: 10.1016/j.jbi.2020.103442. Epub 2020 May 22.

Abstract

Deep learning Convolutional Neural Networks have achieved remarkable performance in a variety of classification tasks. The data-driven nature of deep learning indicates that a model behaves in response to the data used to train the model, and the quality of datasets may lead to substantial influence on the model's performance, especially when dealing with complicated clinical images. In this paper, we propose a simple and novel method to investigate and quantify a deep learning model's response with respect to a given sample, allowing us to detect out-of-distribution samples based on a newly proposed metric, Response Score. The key idea is that samples belonging to different classes may have different degrees of influence on a model. We quantify the resulting consequence of a single sample to a trained-model and relate the quantitative measure of the consequence (by the Response Score) to detect the out-of-distribution samples. The proposed method can find multiple applications such as (1) recognizing abnormal samples, (2) detecting mixed-domain data, and (3) identifying mislabeled data. We present extensive experiments on the three different applications using four biomedical imaging datasets. Experimental results show that our method exhibits remarkable performance and outperforms the compared methods.

摘要

深度学习卷积神经网络在各种分类任务中取得了显著的性能。深度学习的数据驱动性质表明,模型的行为是对用于训练模型的数据的响应,并且数据集的质量可能对模型的性能产生重大影响,特别是在处理复杂的临床图像时。在本文中,我们提出了一种简单而新颖的方法来研究和量化深度学习模型对给定样本的响应,使我们能够基于新提出的指标“响应分数”检测分布外样本。关键思想是属于不同类别的样本对模型可能有不同程度的影响。我们量化单个样本对训练模型的结果,并将结果的定量度量(通过响应分数)关联起来以检测分布外样本。所提出的方法可以找到多种应用,例如(1)识别异常样本,(2)检测混合域数据,以及(3)识别错误标记的数据。我们使用四个生物医学成像数据集对这三种不同应用进行了广泛的实验。实验结果表明,我们的方法表现出卓越的性能,优于比较方法。

相似文献

本文引用的文献

4
Classification in the presence of label noise: a survey.带标签噪声的分类:综述。
IEEE Trans Neural Netw Learn Syst. 2014 May;25(5):845-69. doi: 10.1109/TNNLS.2013.2292894.
5
Benchmarking HEp-2 cells classification methods.HEp-2 细胞分类方法的基准测试。
IEEE Trans Med Imaging. 2013 Oct;32(10):1878-89. doi: 10.1109/TMI.2013.2268163. Epub 2013 Jun 18.
6
Outlier detection for patient monitoring and alerting.患者监测和报警的异常值检测。
J Biomed Inform. 2013 Feb;46(1):47-55. doi: 10.1016/j.jbi.2012.08.004. Epub 2012 Aug 27.
9
Estimating the support of a high-dimensional distribution.估计高维分布的支撑集。
Neural Comput. 2001 Jul;13(7):1443-71. doi: 10.1162/089976601750264965.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验