Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
Department of Ophthalmology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
J Chin Med Assoc. 2020 Nov;83(11):1034-1038. doi: 10.1097/JCMA.0000000000000351.
Optical coherence tomography (OCT) is considered as a sensitive and noninvasive tool to evaluate the macular lesions. In patients with diabetes mellitus (DM), the existence of diabetic macular edema (DME) can cause significant vision impairment and further intravitreal injection (IVI) of anti-vascular endothelial growth factor (VEGF) is needed. However, the increasing number of DM patients makes it a big burden for clinicians to manually determine whether DME exists in the OCT images. The artificial intelligence (AI) now enormously applied to many medical territories may help reduce the burden on clinicians.
We selected DME patients receiving IVI of anti-VEGF or corticosteroid at Taipei Veterans General Hospital in 2017. All macular cross-sectional scan OCT images were collected retrospectively from the eyes of these patients from January 2008 to July 2018. We further established AI models based on convolutional neural network architecture to determine whether the DM patients have DME by OCT images.
Based on the convolutional neural networks, InceptionV3 and VGG16, our AI system achieved a high DME diagnostic accuracy of 93.09% and 92.82%, respectively. The sensitivity of the VGG16 and InceptionV3 models was 96.48% and 95.15%., respectively. The specificity was corresponding to 86.67% and 89.63% for VGG16 and InceptionV3, respectively. We further developed an OCT-driven platform based on these AI models.
We successfully set up AI models to provide an accurate diagnosis of DME by OCT images. These models may assist clinicians in screening DME in DM patients in the future.
光学相干断层扫描(OCT)被认为是评估黄斑病变的一种敏感且无创的工具。在糖尿病患者中,糖尿病性黄斑水肿(DME)的存在可导致明显的视力损害,进而需要进行眼内抗血管内皮生长因子(VEGF)注射。然而,随着糖尿病患者数量的增加,临床医生手动确定 OCT 图像中是否存在 DME 成为了一个巨大的负担。人工智能(AI)如今在许多医学领域得到了广泛应用,它可能有助于减轻临床医生的负担。
我们选择了 2017 年在台北荣民总医院接受抗 VEGF 或皮质类固醇眼内注射的 DME 患者。回顾性地从这些患者 2008 年 1 月至 2018 年 7 月的眼部采集了所有黄斑横截面扫描 OCT 图像。我们进一步基于卷积神经网络架构建立 AI 模型,以通过 OCT 图像确定 DM 患者是否患有 DME。
基于卷积神经网络,InceptionV3 和 VGG16,我们的 AI 系统分别实现了 93.09%和 92.82%的高 DME 诊断准确率。VGG16 和 InceptionV3 模型的灵敏度分别为 96.48%和 95.15%。特异性分别对应于 VGG16 和 InceptionV3 的 86.67%和 89.63%。我们进一步基于这些 AI 模型开发了一个 OCT 驱动的平台。
我们成功地建立了 AI 模型,通过 OCT 图像提供 DME 的准确诊断。这些模型将来可能有助于临床医生筛选糖尿病患者的 DME。