Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
J Chin Med Assoc. 2020 Dec;83(12):1102-1106. doi: 10.1097/JCMA.0000000000000355.
Diabetic macular edema (DME) is a sight-threatening condition that needs regular examinations and remedies. Optical coherence tomography (OCT) is the most common used examination to evaluate the structure and thickness of the macula, but the software in the OCT machine does not tell the clinicians whether DME exists directly. Recently, artificial intelligence (AI) is expected to aid in diagnosis generation and therapy selection. We thus develop a smartphone-based offline AI system that provides diagnostic suggestions and medical strategies through analyzing OCT images from diabetic patients at the risk of developing DME.
DME patients receiving treatments in 2017 at Taipei Veterans General Hospital were included in this study. We retrospectively collected the OCT images of these patients from January 2008 to July 2018. We established the AI model based on MobileNet architecture to classify the OCT images conditions. The confusion matrix has been applied to present the performance of the trained AI model.
Based on the convolutional neural network with the MobileNet model, our AI system achieved a high DME diagnostic accuracy of 90.02%, which is comparable to other AI systems such as InceptionV3 and VGG16. We further developed a mobile-application based on this AI model available at https://aicl.ddns.net/DME.apk.
We successful integrated an AI model into the mobile device to provide an offline method to provide the diagnosis for quickly screening the risk of developing DME. With the offline property, our model could help those nonophthalmological healthcare providers in offshore islands or underdeveloped countries.
糖尿病性黄斑水肿(DME)是一种威胁视力的疾病,需要定期进行检查和治疗。光学相干断层扫描(OCT)是最常用于评估黄斑结构和厚度的检查方法,但 OCT 机器中的软件并不能直接告诉临床医生是否存在 DME。最近,人工智能(AI)有望辅助诊断生成和治疗选择。因此,我们开发了一种基于智能手机的离线 AI 系统,该系统通过分析有发生 DME 风险的糖尿病患者的 OCT 图像,为诊断提供建议和医疗策略。
本研究纳入了 2017 年在台北荣民总医院接受治疗的 DME 患者。我们回顾性地收集了这些患者从 2008 年 1 月至 2018 年 7 月的 OCT 图像。我们基于 MobileNet 架构建立了 AI 模型来对 OCT 图像进行分类。我们应用混淆矩阵来呈现训练后的 AI 模型的性能。
基于 MobileNet 模型的卷积神经网络,我们的 AI 系统实现了高达 90.02%的 DME 诊断准确率,与 InceptionV3 和 VGG16 等其他 AI 系统相当。我们进一步开发了一个基于该 AI 模型的移动应用程序,可在 https://aicl.ddns.net/DME.apk 上获得。
我们成功地将 AI 模型集成到移动设备中,提供了一种离线方法来快速筛查发生 DME 的风险。凭借离线功能,我们的模型可以帮助那些在离岛或欠发达国家的非眼科医疗保健提供者。