Mansbach Rachael A, Leus Inga V, Mehla Jitender, Lopez Cesar A, Walker John K, Rybenkov Valentin V, Hengartner Nicolas W, Zgurskaya Helen I, Gnanakaran S
Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States.
Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States.
J Chem Inf Model. 2020 Jun 22;60(6):2838-2847. doi: 10.1021/acs.jcim.0c00352. Epub 2020 Jun 9.
Drug discovery faces a crisis. The industry has used up the "obvious" space in which to find novel drugs for biomedical applications, and productivity is declining. One strategy to combat this is rational approaches to expand the search space without relying on chemical intuition, to avoid rediscovery of similar spaces. In this work, we present proof of concept of an approach to rationally identify a "chemical vocabulary" related to a specific drug activity of interest without employing known rules. We focus on the pressing concern of multidrug resistance in by searching for submolecules that promote compound entry into this bacterium. By synergizing theory, computation, and experiment, we validate our approach, explain the molecular mechanism behind identified fragments promoting compound entry, and select candidate compounds from an external library that display good permeation ability.
药物研发面临危机。该行业已用尽用于寻找生物医学应用新型药物的“明显”空间,且生产率正在下降。应对这一问题的一种策略是采用合理方法来扩大搜索空间,而不依赖化学直觉,以避免重新发现相似空间。在这项工作中,我们展示了一种方法的概念验证,即无需使用已知规则就能合理识别与感兴趣的特定药物活性相关的“化学词汇”。我们通过寻找促进化合物进入这种细菌的亚分子,来关注多重耐药性这一紧迫问题。通过将理论、计算和实验相结合,我们验证了我们的方法,解释了已识别片段促进化合物进入背后的分子机制,并从外部库中选择了具有良好渗透能力的候选化合物。