Suppr超能文献

机器学习算法识别出用于穿透革兰氏阴性菌的抗生素词汇表。

Machine Learning Algorithm Identifies an Antibiotic Vocabulary for Permeating Gram-Negative Bacteria.

作者信息

Mansbach Rachael A, Leus Inga V, Mehla Jitender, Lopez Cesar A, Walker John K, Rybenkov Valentin V, Hengartner Nicolas W, Zgurskaya Helen I, Gnanakaran S

机构信息

Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States.

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States.

出版信息

J Chem Inf Model. 2020 Jun 22;60(6):2838-2847. doi: 10.1021/acs.jcim.0c00352. Epub 2020 Jun 9.

Abstract

Drug discovery faces a crisis. The industry has used up the "obvious" space in which to find novel drugs for biomedical applications, and productivity is declining. One strategy to combat this is rational approaches to expand the search space without relying on chemical intuition, to avoid rediscovery of similar spaces. In this work, we present proof of concept of an approach to rationally identify a "chemical vocabulary" related to a specific drug activity of interest without employing known rules. We focus on the pressing concern of multidrug resistance in by searching for submolecules that promote compound entry into this bacterium. By synergizing theory, computation, and experiment, we validate our approach, explain the molecular mechanism behind identified fragments promoting compound entry, and select candidate compounds from an external library that display good permeation ability.

摘要

药物研发面临危机。该行业已用尽用于寻找生物医学应用新型药物的“明显”空间,且生产率正在下降。应对这一问题的一种策略是采用合理方法来扩大搜索空间,而不依赖化学直觉,以避免重新发现相似空间。在这项工作中,我们展示了一种方法的概念验证,即无需使用已知规则就能合理识别与感兴趣的特定药物活性相关的“化学词汇”。我们通过寻找促进化合物进入这种细菌的亚分子,来关注多重耐药性这一紧迫问题。通过将理论、计算和实验相结合,我们验证了我们的方法,解释了已识别片段促进化合物进入背后的分子机制,并从外部库中选择了具有良好渗透能力的候选化合物。

相似文献

引用本文的文献

1
Sophisticated natural products as antibiotics.作为抗生素的复杂天然产物。
Nature. 2024 Aug;632(8023):39-49. doi: 10.1038/s41586-024-07530-w. Epub 2024 Jul 31.
8
Machine Learning in Antibacterial Drug Design.抗菌药物设计中的机器学习
Front Pharmacol. 2022 May 3;13:864412. doi: 10.3389/fphar.2022.864412. eCollection 2022.

本文引用的文献

1
Fragments: where are we now?片段:我们现在在哪里?
Biochem Soc Trans. 2020 Feb 28;48(1):271-280. doi: 10.1042/BST20190694.
2
Molecular characterization of the outer membrane of Pseudomonas aeruginosa.铜绿假单胞菌外膜的分子特征。
Biochim Biophys Acta Biomembr. 2020 Mar 1;1862(3):183151. doi: 10.1016/j.bbamem.2019.183151. Epub 2019 Dec 14.
3
Fragment-Based Computational Method for Designing GPCR Ligands.基于片段的 G 蛋白偶联受体配体设计计算方法。
J Chem Inf Model. 2020 Sep 28;60(9):4339-4349. doi: 10.1021/acs.jcim.9b00699. Epub 2019 Nov 11.
4
Identification of Novel Antibacterials Using Machine Learning Techniques.利用机器学习技术鉴定新型抗菌药物
Front Pharmacol. 2019 Aug 27;10:913. doi: 10.3389/fphar.2019.00913. eCollection 2019.
6
Permeability barriers of Gram-negative pathogens.革兰氏阴性病原体的通透性屏障。
Ann N Y Acad Sci. 2020 Jan;1459(1):5-18. doi: 10.1111/nyas.14134. Epub 2019 Jun 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验