Suppr超能文献

矮牵牛 mRNA 的 N6-甲基腺苷甲基组

The N-Methyladenosine Methylome of Petunia mRNA.

机构信息

Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.

Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China.

出版信息

Plant Physiol. 2020 Aug;183(4):1710-1724. doi: 10.1104/pp.20.00382. Epub 2020 May 27.

Abstract

N-methyladenosine is a unique type of base methylation in that it blocks Watson-Crick base pairing and introduces a positive charge. mA is prevalent in yeast and mammalian mRNA and plays a functional role. However, little is known about the abundance, dynamics, and topology of this modification in plant mRNA. Dot blotting and liquid chromatography tandem mass spectrometry analyses revealed a dynamic pattern of mA mRNA modification in various tissues and at different developmental stages in petunia (), a model system for plant growth and development. We performed transcriptome-wide profiling of mA in petunia mRNA by mA mRNA immunoprecipitation followed by a deep-sequencing approach (mA-seq, using an mA-specific antibody). mA-seq analysis identified 4,993 mA peaks in 3,231 genes expressed in petunia corollas; there were 251 mA peaks in which A residues were partly replaced by thymine and/or reverse transcription stopped at an adenine site. mA was enriched in coding sequences, with single peaks located immediately after start codons. Ethylene treatment upregulated 400 mA peaks in 375 mRNAs and downregulated 603 mA peaks in 530 mRNAs in petunia corollas; 975 mA peaks in mRNA were only detected in corollas treated with air and 430 were only detected in corollas treated with ethylene. Silencing of petunia () reduced the mA level in mRNA in vivo and in vitro. In addition, silencing caused abnormal leaf development, and the PhTRMT61A protein was localized to the nucleus. Thus, mA in mRNA is an important epitranscriptome marker and plays a role in plant growth and development.

摘要

N6-甲基腺苷(m6A)是一种独特的碱基甲基化类型,它能阻断 Watson-Crick 碱基配对并引入正电荷。m6A 在酵母和哺乳动物 mRNA 中普遍存在,并发挥着功能作用。然而,关于该修饰在植物 mRNA 中的丰度、动态和拓扑结构,人们知之甚少。点印迹和液相色谱串联质谱分析显示,在矮牵牛()的各种组织和不同发育阶段的 mRNA 中,m6A 存在动态的修饰模式,矮牵牛是植物生长和发育的模式系统。我们通过 m6A mRNA 免疫沉淀 followed by 深度测序方法(mA-seq,使用 m6A 特异性抗体),在矮牵牛 mRNA 中转录组范围内对 m6A 进行了分析。mA-seq 分析在表达于矮牵牛花瓣中的 3,231 个基因中鉴定出 4,993 个 m6A 峰;在 251 个 m6A 峰中,A 残基部分被胸腺嘧啶取代,或者逆转录在腺嘌呤位点停止。m6A 在编码序列中富集,单个峰位于起始密码子之后。乙烯处理上调了矮牵牛花瓣中 375 个 mRNA 中的 400 个 m6A 峰,下调了 530 个 mRNA 中的 603 个 m6A 峰;仅在空气处理的花瓣中检测到 975 个 m6A 峰,仅在乙烯处理的花瓣中检测到 430 个 m6A 峰。沉默矮牵牛()降低了体内和体外 mRNA 中的 m6A 水平。此外,沉默导致叶片发育异常,PhTRMT61A 蛋白定位于细胞核。因此,mRNA 中的 m6A 是重要的转录后修饰标志物,在植物生长和发育中发挥作用。

相似文献

1
The N-Methyladenosine Methylome of Petunia mRNA.
Plant Physiol. 2020 Aug;183(4):1710-1724. doi: 10.1104/pp.20.00382. Epub 2020 May 27.
2
RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias.
BMC Plant Biol. 2014 Nov 18;14:307. doi: 10.1186/s12870-014-0307-2.
4
Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias.
Plant Physiol. 2017 Jan;173(1):668-687. doi: 10.1104/pp.16.00795. Epub 2016 Nov 3.
5
Transcriptome-Wide Mapping of N -Methyladenosine Methylome.
Methods Mol Biol. 2017;1562:245-255. doi: 10.1007/978-1-4939-6807-7_16.
7
5-Methylcytosine RNA Methylation in Arabidopsis Thaliana.
Mol Plant. 2017 Nov 6;10(11):1387-1399. doi: 10.1016/j.molp.2017.09.013. Epub 2017 Sep 28.
8
Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome.
Nat Chem Biol. 2016 May;12(5):311-6. doi: 10.1038/nchembio.2040. Epub 2016 Feb 10.
9
PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.
New Phytol. 2017 Sep;215(4):1490-1502. doi: 10.1111/nph.14675. Epub 2017 Jul 4.
10
The central role of PhEIN2 in ethylene responses throughout plant development in petunia.
Plant Physiol. 2004 Oct;136(2):2900-12. doi: 10.1104/pp.104.046979. Epub 2004 Oct 1.

引用本文的文献

1
Evolutionary Dynamics of Plant TRM6/TRM61 Complexes.
Plants (Basel). 2025 Jun 11;14(12):1778. doi: 10.3390/plants14121778.
2
Epitranscriptomic modifications in plant RNAs.
RNA Biol. 2025 Dec;22(1):1-14. doi: 10.1080/15476286.2025.2515663. Epub 2025 Jun 8.
3
Epigenetics in the modern era of crop improvements.
Sci China Life Sci. 2025 Jan 8. doi: 10.1007/s11427-024-2784-3.
4
RNA modifications in plant biotic interactions.
Plant Commun. 2025 Feb 10;6(2):101232. doi: 10.1016/j.xplc.2024.101232. Epub 2024 Dec 25.
5
RNA modifications in plant adaptation to abiotic stresses.
Plant Commun. 2025 Feb 10;6(2):101229. doi: 10.1016/j.xplc.2024.101229. Epub 2024 Dec 21.
6
Abundant mRNA mA modification in dinoflagellates: a new layer of gene regulation.
EMBO Rep. 2024 Nov;25(11):4655-4673. doi: 10.1038/s44319-024-00234-2. Epub 2024 Sep 2.
8
mA demethylase Alkbh3 regulates neurogenesis through mA demethylation of Mmp15 mRNA.
Cell Biosci. 2024 Jul 14;14(1):92. doi: 10.1186/s13578-024-01275-9.
10
The emerging role of epitranscriptome in shaping stress responses in plants.
Plant Cell Rep. 2023 Oct;42(10):1531-1555. doi: 10.1007/s00299-023-03046-1. Epub 2023 Jul 23.

本文引用的文献

1
Metabolome and proteome of ethylene-treated papayas reveal different pathways to volatile compounds biosynthesis.
Food Res Int. 2020 May;131:108975. doi: 10.1016/j.foodres.2019.108975. Epub 2020 Jan 3.
2
PhDHS Is Involved in Chloroplast Development in Petunia.
Front Plant Sci. 2019 Mar 13;10:284. doi: 10.3389/fpls.2019.00284. eCollection 2019.
3
Dot Blot Analysis for Measuring Global N-Methyladenosine Modification of RNA.
Methods Mol Biol. 2019;1870:263-271. doi: 10.1007/978-1-4939-8808-2_20.
4
Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves.
Plant Physiol Biochem. 2018 Sep;130:173-180. doi: 10.1016/j.plaphy.2018.07.002. Epub 2018 Jul 4.
5
5-Methylcytosine RNA Methylation in Arabidopsis Thaliana.
Mol Plant. 2017 Nov 6;10(11):1387-1399. doi: 10.1016/j.molp.2017.09.013. Epub 2017 Sep 28.
6
PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.
New Phytol. 2017 Sep;215(4):1490-1502. doi: 10.1111/nph.14675. Epub 2017 Jul 4.
7
Dynamic RNA Modifications in Gene Expression Regulation.
Cell. 2017 Jun 15;169(7):1187-1200. doi: 10.1016/j.cell.2017.05.045.
9
Regulatory Role of N -methyladenosine (m A) Methylation in RNA Processing and Human Diseases.
J Cell Biochem. 2017 Sep;118(9):2534-2543. doi: 10.1002/jcb.25967. Epub 2017 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验