文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

适用于特定生物医学应用的磁性纳米颗粒。

Magnetic nanoparticles adapted for specific biomedical applications.

作者信息

Dutz Silvio, Müller Robert, Eberbeck Dietmar, Hilger Ingrid, Zeisberger Matthias

出版信息

Biomed Tech (Berl). 2015 Oct;60(5):405-16. doi: 10.1515/bmt-2015-0044.


DOI:10.1515/bmt-2015-0044
PMID:26146094
Abstract

Magnetic nanoparticles (MNPs) are used in different biomedical applications, whereby each application requires specific particle properties. To fulfill these requirements, particle properties have to be optimized by means of variation of crystal structure, particle size, and size distribution. To this aim, improved aqueous precipitation procedures for magnetic iron oxide nanoparticle synthesis were developed. One procedure focused on the cyclic growth of MNPs without nucleation of new particle cores during precipitation. The second novel particle type are magnetic multicore nanoparticles, which consist of single cores of approximately 10 nm forming dense clusters in the size range from 40 to 80 nm. Their highest potential features these multicore particles in hyperthermia application. In our in vivo experiments, therapeutically suitable temperatures were reached after 20 s of heating for a particle concentration in the tumor of 1% and field parameters of H=24 kA/m and f=410 kHz. This review on our recent investigations for particle optimization demonstrates that tuning magnetic properties of MNPs can be obtained by the alteration of their structure, size, and size distribution. This can be realized by means of control of particle size during synthesis or subsequent size-dependent fractionation. The here-developed particles show high potential for biomedical applications.

摘要

磁性纳米颗粒(MNPs)被用于不同的生物医学应用中,其中每个应用都需要特定的颗粒特性。为了满足这些要求,必须通过改变晶体结构、颗粒尺寸和尺寸分布来优化颗粒特性。为此,开发了改进的磁性氧化铁纳米颗粒水相沉淀合成方法。一种方法侧重于MNPs的循环生长,在沉淀过程中不会形成新的颗粒核心。第二种新型颗粒是磁性多核纳米颗粒,它由直径约10nm的单核组成,形成尺寸范围为40至80nm的致密簇。它们的最大潜力体现在这些多核颗粒在热疗应用中。在我们的体内实验中,对于肿瘤中颗粒浓度为1%、磁场参数为H = 24 kA/m和f = 410 kHz的情况,加热20秒后达到了治疗适宜温度。这篇关于我们最近颗粒优化研究的综述表明,通过改变MNPs的结构、尺寸和尺寸分布可以调节其磁性。这可以通过在合成过程中控制颗粒尺寸或随后进行尺寸依赖性分级分离来实现。这里开发的颗粒在生物医学应用中显示出巨大潜力。

相似文献

[1]
Magnetic nanoparticles adapted for specific biomedical applications.

Biomed Tech (Berl). 2015-10

[2]
Synthetic routes to magnetic nanoparticles for MPI.

Biomed Tech (Berl). 2013-12

[3]
Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.

Nanoscale. 2015-5-14

[4]
Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles.

Nanotechnology. 2012-3-21

[5]
Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2020-12

[6]
Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles.

Nanotechnology. 2012-8-8

[7]
Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

Mater Sci Eng C Mater Biol Appl. 2016-1-1

[8]
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

Molecules. 2016-10-13

[9]
A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-3-15

[10]
Cationic albumin-conjugated magnetite nanoparticles, novel candidate for hyperthermia cancer therapy.

Int J Hyperthermia. 2013-7-17

引用本文的文献

[1]
Fe-Cr-Nb-B Magnetic Particles and Adipose-Derived Mesenchymal Cells Trigger Cancer Cell Apoptosis by Magneto-Mechanical Actuation.

Nanomaterials (Basel). 2023-11-14

[2]
Optimization of Magnetic Cobalt Ferrite Nanoparticles for Magnetic Heating Applications in Biomedical Technology.

Nanomaterials (Basel). 2023-5-18

[3]
Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications.

Nanomaterials (Basel). 2022-1-21

[4]
Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties.

Nanomaterials (Basel). 2020-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索