Suppr超能文献

这些马达是为行走而设计的。

These motors were made for walking.

机构信息

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.

出版信息

Protein Sci. 2020 Aug;29(8):1707-1723. doi: 10.1002/pro.3895. Epub 2020 Jun 26.

Abstract

Kinesins are a diverse group of adenosine triphosphate (ATP)-dependent motor proteins that transport cargos along microtubules (MTs) and change the organization of MT networks. Shared among all kinesins is a ~40 kDa motor domain that has evolved an impressive assortment of motility and MT remodeling mechanisms as a result of subtle tweaks and edits within its sequence. Several elegant studies of different kinesin isoforms have exposed the purpose of structural changes in the motor domain as it engages and leaves the MT. However, few studies have compared the sequences and MT contacts of these kinesins systematically. Along with clever strategies to trap kinesin-tubulin complexes for X-ray crystallography, new advancements in cryo-electron microscopy have produced a burst of high-resolution structures that show kinesin-MT interfaces more precisely than ever. This review considers the MT interactions of kinesin subfamilies that exhibit significant differences in speed, processivity, and MT remodeling activity. We show how their sequence variations relate to their tubulin footprint and, in turn, how this explains the molecular activities of previously characterized mutants. As more high-resolution structures become available, this type of assessment will quicken the pace toward establishing each kinesin's design-function relationship.

摘要

驱动蛋白是一组多样化的三磷酸腺苷(ATP)依赖性马达蛋白,可沿微管(MT)运输货物并改变 MT 网络的组织。所有驱动蛋白都共享一个约 40 kDa 的马达结构域,由于其序列中的细微调整和编辑,该结构域进化出了令人印象深刻的运动和 MT 重塑机制。对不同驱动蛋白同工型的几项精细研究揭示了马达结构域在与 MT 结合和离开 MT 时的结构变化的目的。然而,很少有研究系统地比较这些驱动蛋白的序列和 MT 接触。除了用于 X 射线晶体学的捕获驱动蛋白-微管复合物的巧妙策略外,冷冻电子显微镜的新进展还产生了一波高分辨率结构,这些结构比以往任何时候都更精确地显示了驱动蛋白-MT 界面。本综述考虑了在速度、进程和 MT 重塑活性方面表现出显著差异的驱动蛋白亚家族的 MT 相互作用。我们展示了它们的序列变异如何与其微管足迹相关,以及这反过来如何解释以前表征的突变体的分子活性。随着更多高分辨率结构的出现,这种评估将加快建立每个驱动蛋白的设计-功能关系的步伐。

相似文献

1
These motors were made for walking.
Protein Sci. 2020 Aug;29(8):1707-1723. doi: 10.1002/pro.3895. Epub 2020 Jun 26.
2
Kinesin, 30 years later: Recent insights from structural studies.
Protein Sci. 2015 Jul;24(7):1047-56. doi: 10.1002/pro.2697. Epub 2015 Jun 11.
3
The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner.
J Biol Chem. 2017 Sep 1;292(35):14680-14694. doi: 10.1074/jbc.M117.797662. Epub 2017 Jul 12.
5
High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations.
EMBO J. 2006 Sep 20;25(18):4187-94. doi: 10.1038/sj.emboj.7601299. Epub 2006 Aug 31.
6
Large conformational changes in a kinesin motor catalyzed by interaction with microtubules.
Mol Cell. 2006 Sep 15;23(6):913-23. doi: 10.1016/j.molcel.2006.07.020.
7
Interaction of kinesin motors, microtubules, and MAPs.
J Muscle Res Cell Motil. 2006;27(2):125-37. doi: 10.1007/s10974-005-9051-4. Epub 2005 Dec 17.
9
Allosteric control of kinesin's motor domain by tubulin: a molecular dynamics study.
Phys Chem Chem Phys. 2014 Apr 7;16(13):6189-98. doi: 10.1039/c3cp53367k.
10
The E-hook of tubulin interacts with kinesin's head to increase processivity and speed.
Biophys J. 2005 Nov;89(5):3223-34. doi: 10.1529/biophysj.104.057505. Epub 2005 Aug 12.

引用本文的文献

1
The known unknowns of the Hsp90 chaperone.
Elife. 2024 Dec 31;13:e102666. doi: 10.7554/eLife.102666.
2
Force generation and resistance in human mitosis.
Biophys Rev. 2024 Sep 28;16(5):551-562. doi: 10.1007/s12551-024-01235-0. eCollection 2024 Oct.
4
TUBB3 and KIF21A in neurodevelopment and disease.
Front Neurosci. 2023 Aug 4;17:1226181. doi: 10.3389/fnins.2023.1226181. eCollection 2023.
5
How neurons maintain their axons long-term: an integrated view of axon biology and pathology.
Front Neurosci. 2023 Jul 26;17:1236815. doi: 10.3389/fnins.2023.1236815. eCollection 2023.
6
Causes, costs and consequences of kinesin motors communicating through the microtubule lattice.
J Cell Sci. 2023 Mar 1;136(5). doi: 10.1242/jcs.260735. Epub 2023 Mar 3.
10
Selective motor activation in organelle transport along axons.
Nat Rev Mol Cell Biol. 2022 Nov;23(11):699-714. doi: 10.1038/s41580-022-00491-w. Epub 2022 May 30.

本文引用的文献

1
Bioenergetics of the Kinesin-8 Motor Isoform.
Biomolecules. 2020 Apr 7;10(4):563. doi: 10.3390/biom10040563.
2
Structure of Microtubule-Trapped Human Kinesin-5 and Its Mechanism of Inhibition Revealed Using Cryoelectron Microscopy.
Structure. 2020 Apr 7;28(4):450-457.e5. doi: 10.1016/j.str.2020.01.013. Epub 2020 Feb 20.
3
Kinesin-13 and Kinesin-8 Function during Cell Growth and Division in the Moss .
Plant Cell. 2020 Mar;32(3):683-702. doi: 10.1105/tpc.19.00521. Epub 2020 Jan 9.
4
Cryo-EM structure of the Ustilago maydis kinesin-5 motor domain bound to microtubules.
J Struct Biol. 2019 Sep 1;207(3):312-316. doi: 10.1016/j.jsb.2019.07.003. Epub 2019 Jul 6.
5
Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin.
Curr Biol. 2019 Jul 22;29(14):2259-2269.e4. doi: 10.1016/j.cub.2019.05.075. Epub 2019 Jul 4.
6
Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors.
Biophys J. 2019 Mar 19;116(6):1115-1126. doi: 10.1016/j.bpj.2019.01.036. Epub 2019 Feb 5.
7
Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A.
J Biol Chem. 2019 Apr 19;294(16):6353-6363. doi: 10.1074/jbc.RA118.005765. Epub 2019 Feb 15.
9
Parts list for a microtubule depolymerising kinesin.
Biochem Soc Trans. 2018 Dec 17;46(6):1665-1672. doi: 10.1042/BST20180350. Epub 2018 Nov 22.
10
Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport.
J Cell Biol. 2018 Dec 3;217(12):4164-4183. doi: 10.1083/jcb.201711178. Epub 2018 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验