Suppr超能文献

30年后的驱动蛋白:结构研究的最新见解

Kinesin, 30 years later: Recent insights from structural studies.

作者信息

Wang Weiyi, Cao Luyan, Wang Chunguang, Gigant Benoît, Knossow Marcel

机构信息

Institute of Protein Research, Tongji University, Shanghai, China.

Institut de Biologie Intégrative de la Cellule (I2BC), Centre National de la Recherche Scientifique, Gif sur Yvette, France.

出版信息

Protein Sci. 2015 Jul;24(7):1047-56. doi: 10.1002/pro.2697. Epub 2015 Jun 11.

Abstract

Motile kinesins are motor proteins that move unidirectionally along microtubules as they hydrolyze ATP. They share a conserved motor domain (head) which harbors both the ATP- and microtubule-binding activities. The kinesin that has been studied most moves toward the microtubule (+)-end by alternately advancing its two heads along a single protofilament. This kinesin is the subject of this review. Its movement is associated to alternate conformations of a peptide, the neck linker, at the C-terminal end of the motor domain. Recent progress in the understanding of its structural mechanism has been made possible by high-resolution studies, by cryo electron microscopy and X-ray crystallography, of complexes of the motor domain with its track protein, tubulin. These studies clarified the structural changes that occur as ATP binds to a nucleotide-free microtubule-bound kinesin, initiating each mechanical step. As ATP binds to a head, it triggers orientation changes in three rigid motor subdomains, leading the neck linker to dock onto the motor core, which directs the other head toward the microtubule (+)-end. The relationship between neck linker docking and the orientations of the motor subdomains also accounts for kinesin's processivity, which is remarkable as this motor protein only falls off from a microtubule after taking about a hundred steps. As tools are now available to determine high-resolution structures of motor domains complexed to their track protein, it should become possible to extend these studies to other kinesins and relate their sequence variations to their diverse properties.

摘要

驱动蛋白是一类运动蛋白,它们在水解ATP时沿微管单向移动。它们共享一个保守的运动结构域(头部),该结构域兼具ATP结合和微管结合活性。研究最多的驱动蛋白通过沿着单根原纤维交替推进其两个头部,朝着微管的(+)端移动。本文综述的主题就是这种驱动蛋白。它的运动与运动结构域C末端的一种肽(颈部连接体)的交替构象相关。通过对运动结构域与其轨道蛋白微管蛋白复合物进行冷冻电子显微镜和X射线晶体学的高分辨率研究,在理解其结构机制方面取得了最新进展。这些研究阐明了ATP与无核苷酸的微管结合驱动蛋白结合时发生的结构变化,从而启动每个机械步骤。当ATP与一个头部结合时,它会触发三个刚性运动亚结构域的方向变化,导致颈部连接体对接至运动核心,从而将另一个头部导向微管的(+)端。颈部连接体对接与运动亚结构域方向之间的关系也解释了驱动蛋白的持续性,这一点很显著,因为这种运动蛋白在迈出大约一百步后才会从微管上脱落。由于现在已有工具可用于确定与轨道蛋白复合的运动结构域的高分辨率结构,因此将这些研究扩展到其他驱动蛋白,并将它们的序列变异与其不同特性联系起来应该成为可能。

相似文献

4
These motors were made for walking.这些马达是为行走而设计的。
Protein Sci. 2020 Aug;29(8):1707-1723. doi: 10.1002/pro.3895. Epub 2020 Jun 26.
7
An atomic-level mechanism for activation of the kinesin molecular motors.一种激活驱动蛋白分子马达的原子水平机制。
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4111-6. doi: 10.1073/pnas.0911208107. Epub 2010 Feb 16.
10
Switch-based mechanism of kinesin motors.驱动蛋白马达的基于开关的机制。
Nature. 2001 May 24;411(6836):439-45. doi: 10.1038/35078000.

引用本文的文献

1
'Intelligent' proteins.“智能”蛋白质。
Cell Mol Life Sci. 2025 Jun 14;82(1):239. doi: 10.1007/s00018-025-05770-1.

本文引用的文献

5
Kinesin processivity is gated by phosphate release.驱动蛋白的持续性由磷酸释放控制。
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14136-40. doi: 10.1073/pnas.1410943111. Epub 2014 Sep 2.
6
KIF14 binds tightly to microtubules and adopts a rigor-like conformation.KIF14 与微管紧密结合,并采用僵硬样构象。
J Mol Biol. 2014 Aug 26;426(17):2997-3015. doi: 10.1016/j.jmb.2014.05.030. Epub 2014 Jun 17.
7
Functions and mechanics of dynein motor proteins.动力蛋白的功能和力学性质。
Nat Rev Mol Cell Biol. 2013 Nov;14(11):713-26. doi: 10.1038/nrm3667. Epub 2013 Sep 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验