Institute of Social Ecology, University of Natural Resources and Life Sciences, Schottenfeldgasse 29, A-1070 Vienna, Austria,.
Institute of Social Ecology, University of Natural Resources and Life Sciences, Schottenfeldgasse 29, A-1070 Vienna, Austria.
Sci Total Environ. 2020 Sep 15;735:139353. doi: 10.1016/j.scitotenv.2020.139353. Epub 2020 May 12.
Global food systems contribute to climate change, the transgression of planetary boundaries and deforestation. An improved understanding of the environmental impacts of different food system futures is crucial for forging strategies to sustainably nourish a growing world population. We here quantify the greenhouse gas (GHG) emissions of global food system scenarios within a biophysically feasible "option space" in 2050 comprising all scenarios in which biomass supply - calculated as function of agricultural area and yields - is sufficient to cover biomass demand - derived from human diets and the feed demand of livestock. We assessed the biophysical feasibility of 520 scenarios in a hypothetical no-deforestation world. For all feasible scenarios, we calculate (in) direct GHG emissions related to agriculture. We also include (possibly negative) GHG emissions from land-use change, including changes in soil organic carbon (SOC) and carbon sinks from vegetation regrowth on land spared from food production. We identify 313 of 520 scenarios as feasible. Agricultural GHG emissions (excluding land use change) of feasible scenarios range from 1.7 to 12.5 Gt COe yr. When including changes in SOC and vegetation regrowth on spare land, the range is between -10.7 and 12.5 Gt COe yr. Our results show that diets are the main determinant of GHG emissions, with highest GHG emissions found for scenarios including high meat demand, especially if focused on ruminant meat and milk, and lowest emissions for scenarios with vegan diets. Contrary to frequent claims, our results indicate that diets and the composition and quantity of livestock feed, not crop yields, are the strongest determinants of GHG emissions from food-systems when existing forests are to be protected.
全球粮食系统是造成气候变化、超越地球生态边界和森林砍伐的主要原因之一。深入了解不同粮食系统未来的环境影响,对于制定可持续养活全球不断增长人口的战略至关重要。本研究在 2050 年包含所有生物物理可行的“选项空间”内,量化了全球粮食系统情景的温室气体(GHG)排放,其中生物质供应(根据农业面积和产量计算)足以满足生物质需求(来自人类饮食和牲畜饲料需求)。我们评估了假设没有森林砍伐的世界中 520 个情景的生物物理可行性。对于所有可行的情景,我们计算了(直接)与农业相关的 GHG 排放。我们还包括了土地利用变化(包括土壤有机碳(SOC)和因避免粮食生产而在土地上植被再生带来的碳汇)的(可能为负的)GHG 排放。我们确定了 520 个情景中的 313 个是可行的。可行情景的农业 GHG 排放(不包括土地利用变化)范围为 1.7 至 12.5 Gt COe yr。当包括 SOC 和闲置土地上植被再生的变化时,范围在-10.7 至 12.5 Gt COe yr 之间。研究结果表明,饮食是 GHG 排放的主要决定因素,其中包括高肉类需求的情景的 GHG 排放最高,特别是如果重点是反刍动物肉类和牛奶,而以素食为主的情景的 GHG 排放最低。与频繁的说法相反,我们的研究结果表明,当现有森林得到保护时,饮食以及牲畜饲料的组成和数量,而不是作物产量,是粮食系统 GHG 排放的最强决定因素。