Suppr超能文献

一种受生物启发的神经环境,用于控制由放射状胶质细胞、底物化学和拓扑结构组成的神经元。

A bio-inspired neural environment to control neurons comprising radial glia, substrate chemistry and topography.

作者信息

Roach Paul, Parker Terrance, Gadegaard Nikolaj, Alexander Morgan R

机构信息

Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

出版信息

Biomater Sci. 2013 Jan 30;1(1):83-93. doi: 10.1039/c2bm00060a. Epub 2012 Oct 3.

Abstract

Achieving alignment of cells is key to the success of regenerative strategies of neural tissue. We report a high-throughput method to investigate neural cell response to surface chemistry overlaid orthogonally onto a gradient of gradually changing groove widths. Using a bio-inspired approach wherein radial glial cells, which naturally guide neurons in the developing brain, enhance the attachment and directional outgrowth of neurons, we show the differences in the interaction and cellular response of glia, neurons and co-cultured cells. Radial glia were found to preferentially reside in grooves of width 6-35 μm with greater alignment to grooves <10 μm on the hydrophobic and hydrophilic extremes of chemistry. When neurons were sequentially cultured after radial glia, they showed enhanced alignment compared to when they were cultured alone, for all chemistries and groove widths. This is not dependent on co-localisation of the neurons with glia suggesting the radial glial cells pre-condition the substrate giving rise to enhanced attachment and alignment of subsequently cultured neurons. The results indicate a dependence of both primary radial glia and neuron responses on surface chemistry and micro-groove width. Grooved surfaces (width 5-10 μm) of mid-range wettability show the greatest potential to significantly enhance axonal alignment and, therefore, potential regeneration, when pre-conditioned by radial glia, highlighting the importance of surface engineering for neural scaffolds.

摘要

实现细胞排列对齐是神经组织再生策略成功的关键。我们报告了一种高通量方法,用于研究神经细胞对正交叠加在逐渐变化的凹槽宽度梯度上的表面化学的反应。采用一种受生物启发的方法,即发育中的大脑中自然引导神经元的放射状胶质细胞增强神经元的附着和定向生长,我们展示了胶质细胞、神经元和共培养细胞在相互作用和细胞反应方面的差异。发现放射状胶质细胞优先驻留在宽度为6 - 35μm的凹槽中,在化学性质的疏水和亲水极端情况下,与宽度小于10μm的凹槽的对齐性更好。当神经元在放射状胶质细胞之后依次培养时,与单独培养相比,对于所有化学性质和凹槽宽度,它们都表现出增强的对齐性。这并不依赖于神经元与胶质细胞的共定位,表明放射状胶质细胞预处理了底物,从而导致随后培养的神经元的附着和对齐性增强。结果表明,原代放射状胶质细胞和神经元的反应都依赖于表面化学和微凹槽宽度。当由放射状胶质细胞预处理时,中等润湿性的带凹槽表面(宽度5 - 10μm)显示出显著增强轴突对齐性以及因此潜在再生的最大潜力,突出了神经支架表面工程的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验