Márkus B G, Szirmai P, Edelthalhammer K F, Eckerlein P, Hirsch A, Hauke F, Nemes N M, Chacón-Torres Julio C, Náfrádi B, Forró L, Pichler T, Simon F
Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), PO Box 91, H-1521 Budapest, Hungary.
Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
ACS Nano. 2020 Jun 23;14(6):7492-7501. doi: 10.1021/acsnano.0c03191. Epub 2020 Jun 10.
Today's great challenges of energy and informational technologies are addressed with a singular compound, Li- and Na-doped few-layer graphene. All that is impossible for graphite (homogeneous and high-level Na doping) and unstable for single-layer graphene works very well for this structure. The transformation of the Raman G line to a Fano line shape and the emergence of strong, metallic-like electron spin resonance (ESR) modes attest the high level of graphene doping in liquid ammonia for both kinds of alkali atoms. The spin-relaxation time in our materials, deduced from the ESR line width, is 6-8 ns, which is comparable to the longest values found in spin-transport experiments on ultrahigh-mobility graphene flakes. This could qualify our material as a promising candidate in spintronics devices. On the other hand, the successful sodium doping, this being a highly abundant metal, could be an encouraging alternative to lithium batteries.
如今,能源和信息技术领域的重大挑战可通过一种独特的化合物——锂和钠掺杂的少层石墨烯来应对。对于石墨而言无法实现的情况(均匀且高水平的钠掺杂)以及对于单层石墨烯不稳定的情况,在这种结构中却运行良好。拉曼G线向法诺线形的转变以及强的、类似金属的电子自旋共振(ESR)模式的出现证明了在液氨中对于两种碱金属原子而言石墨烯的高掺杂水平。从ESR线宽推导得出,我们材料中的自旋弛豫时间为6 - 8纳秒,这与在超高迁移率石墨烯薄片的自旋输运实验中发现的最长值相当。这使我们的材料有资格成为自旋电子器件中有前景的候选材料。另一方面,成功实现钠掺杂,钠是一种储量丰富的金属,这可能成为锂电池令人鼓舞的替代方案。