Suppr超能文献

多层次的机制确保了短染色体在减数分裂中进行重组。

Multilayered mechanisms ensure that short chromosomes recombine in meiosis.

机构信息

Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nature. 2020 Jun;582(7810):124-128. doi: 10.1038/s41586-020-2248-2. Epub 2020 May 6.

Abstract

In most species, homologous chromosomes must recombine in order to segregate accurately during meiosis. Because small chromosomes would be at risk of missegregation if recombination were randomly distributed, the double-strand breaks (DSBs) that initiate recombination are not located arbitrarily. How the nonrandomness of DSB distributions is controlled is not understood, although several pathways are known to regulate the timing, location and number of DSBs. Meiotic DSBs are generated by Spo11 and accessory DSB proteins, including Rec114 and Mer2, which assemble on chromosomes and are nearly universal in eukaryotes. Here we demonstrate how Saccharomyces cerevisiae integrates multiple temporally distinct pathways to regulate the binding of Rec114 and Mer2 to chromosomes, thereby controlling the duration of a DSB-competent state. The engagement of homologous chromosomes with each other regulates the dissociation of Rec114 and Mer2 later in prophase I, whereas the timing of replication and the proximity to centromeres or telomeres influence the accumulation of Rec114 and Mer2 early in prophase I. Another early mechanism enhances the binding of Rec114 and Mer2 specifically on the shortest chromosomes, and is subject to selection pressure to maintain the hyperrecombinogenic properties of these chromosomes. Thus, the karyotype of an organism and its risk of meiotic missegregation influence the shape and evolution of its recombination landscape. Our results provide a cohesive view of a multifaceted and evolutionarily constrained system that allocates DSBs to all pairs of homologous chromosomes.

摘要

在大多数物种中,同源染色体在减数分裂过程中必须重组,才能准确分离。由于小染色体如果重组随机分布,就有错误分离的风险,因此启动重组的双链断裂(DSB)并非任意定位。尽管已知有几种途径可以调节 DSB 的时间、位置和数量,但非随机的 DSB 分布是如何控制的还不清楚。减数分裂 DSB 由 Spo11 和辅助 DSB 蛋白(包括 Rec114 和 Mer2)产生,这些蛋白在染色体上组装,在真核生物中几乎普遍存在。在这里,我们展示了酿酒酵母如何整合多个时间上不同的途径来调节 Rec114 和 Mer2 与染色体的结合,从而控制 DSB 有效状态的持续时间。同源染色体之间的相互作用调节了在前期 I 后期 Rec114 和 Mer2 的解离,而复制的时间和与着丝粒或端粒的接近程度则影响了前期 I 早期 Rec114 和 Mer2 的积累。另一个早期机制特异性地增强了 Rec114 和 Mer2 在最短染色体上的结合,并且受到选择压力的影响,以维持这些染色体的高重组性质。因此,生物体的核型及其减数分裂错误分离的风险会影响其重组景观的形状和进化。我们的研究结果提供了一个多方面且受进化限制的系统的凝聚力视图,该系统将 DSB 分配给所有同源染色体对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验