Elgabarty Hossam, Kampfrath Tobias, Bonthuis Douwe Jan, Balos Vasileios, Kaliannan Naveen Kumar, Loche Philip, Netz Roland R, Wolf Martin, Kühne Thomas D, Sajadi Mohsen
Department of Chemistry, University of Paderborn, Paderborn, Germany.
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
Sci Adv. 2020 Apr 24;6(17):eaay7074. doi: 10.1126/sciadv.aay7074. eCollection 2020 Apr.
Energy dissipation in water is very fast and more efficient than in many other liquids. This behavior is commonly attributed to the intermolecular interactions associated with hydrogen bonding. Here, we investigate the dynamic energy flow in the hydrogen bond network of liquid water by a pump-probe experiment. We resonantly excite intermolecular degrees of freedom with ultrashort single-cycle terahertz pulses and monitor its Raman response. By using ultrathin sample cell windows, a background-free bipolar signal whose tail relaxes monoexponentially is obtained. The relaxation is attributed to the molecular translational motions, using complementary experiments, force field, and ab initio molecular dynamics simulations. They reveal an initial coupling of the terahertz electric field to the molecular rotational degrees of freedom whose energy is rapidly transferred, within the excitation pulse duration, to the restricted translational motion of neighboring molecules. This rapid energy transfer may be rationalized by the strong anharmonicity of the intermolecular interactions.
水中的能量耗散非常快,且比许多其他液体更高效。这种行为通常归因于与氢键相关的分子间相互作用。在此,我们通过泵浦-探测实验研究液态水氢键网络中的动态能量流动。我们用超短单周期太赫兹脉冲共振激发分子间自由度,并监测其拉曼响应。通过使用超薄样品池窗口,获得了一个背景自由的双极信号,其尾部以单指数形式弛豫。利用互补实验、力场和从头算分子动力学模拟,这种弛豫归因于分子的平动。这些研究揭示了太赫兹电场与分子转动自由度的初始耦合,其能量在激发脉冲持续时间内迅速转移到相邻分子的受限平动中。这种快速的能量转移可以通过分子间相互作用的强非谐性来解释。