Suppr超能文献

自搅拌基因组:大规模染色质动力学、其生物物理起源及影响。

The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications.

机构信息

Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA.

出版信息

Curr Opin Genet Dev. 2020 Apr;61:83-90. doi: 10.1016/j.gde.2020.03.008. Epub 2020 Jun 1.

Abstract

The organization and dynamics of human genome govern all cellular processes - directly impacting the central dogma of biology - yet are poorly understood, especially at large length scales. Chromatin, the functional form of DNA in cells, undergoes frequent local remodeling and rearrangements to accommodate processes such as transcription, replication and DNA repair. How these local activities contribute to nucleus-wide coherent chromatin motion, where micron-scale regions of chromatin move together over several seconds, remains unclear. Activity of nuclear enzymes was found to drive the coherent chromatin dynamics, however, its biological nature and physical mechanism remain to be revealed. The coherent dynamics leads to a perpetual stirring of the genome, leading to collective gene dynamics over microns and seconds, thus likely contributing to local and global gene-expression patterns. Hence, a possible biological role of chromatin coherence may involve gene regulation.

摘要

人类基因组的组织和动态控制着所有的细胞过程——直接影响生物学的中心法则——但人们对此知之甚少,尤其是在大尺度上。染色质是细胞中 DNA 的功能形式,它会频繁地进行局部重塑和重排,以适应转录、复制和 DNA 修复等过程。这些局部活动如何有助于整个细胞核内相干染色质运动,即微米级的染色质区域在几秒钟内一起移动,目前还不清楚。研究发现,核酶的活性驱动了相干染色质的动力学,但它的生物学性质和物理机制仍有待揭示。相干动力学导致基因组的持续搅拌,导致微米和秒级的基因的集体动力学,从而可能导致局部和全局的基因表达模式。因此,染色质相干的一个可能的生物学作用可能涉及基因调控。

相似文献

2
Micron-scale coherence in interphase chromatin dynamics.间期染色质动力学中的微尺度相干性。
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15555-60. doi: 10.1073/pnas.1220313110. Epub 2013 Sep 9.
4
Chromosome dynamics during interphase: a biophysical perspective.间期染色体动力学:一种生物物理视角。
Curr Opin Genet Dev. 2020 Apr;61:37-43. doi: 10.1016/j.gde.2020.03.001. Epub 2020 Apr 15.
6
Chromatin modifications in trypanosomes due to stress.应激导致的锥虫染色质修饰。
Cell Microbiol. 2013 May;15(5):709-17. doi: 10.1111/cmi.12111. Epub 2013 Feb 16.
9
Chromatin regulatory mechanisms and therapeutic opportunities in cancer.染色质调控机制与癌症治疗新契机
Nat Cell Biol. 2019 Feb;21(2):152-161. doi: 10.1038/s41556-018-0258-1. Epub 2019 Jan 2.
10
Protein phosphatases in chromatin structure and function.染色质结构与功能中的蛋白磷酸酶。
Biochim Biophys Acta Mol Cell Res. 2019 Jan;1866(1):90-101. doi: 10.1016/j.bbamcr.2018.07.016. Epub 2018 Jul 20.

引用本文的文献

6
Anomalous coarsening of coalescing nucleoli in human cells.人细胞中合核体粗面内质网的异常聚集。
Biophys J. 2024 Jun 4;123(11):1467-1480. doi: 10.1016/j.bpj.2024.01.005. Epub 2024 Jan 8.
7
Nucleus Mechanosensing in Cardiomyocytes.心肌细胞中的核机械感知。
Int J Mol Sci. 2023 Aug 28;24(17):13341. doi: 10.3390/ijms241713341.
8
How it feels in a cell.细胞内的感受
Trends Cell Biol. 2023 Nov;33(11):924-938. doi: 10.1016/j.tcb.2023.05.002. Epub 2023 Jun 5.
9
A Liquid State Perspective on Dynamics of Chromatin Compartments.染色质区室动力学的液态视角
Front Mol Biosci. 2022 Jan 13;8:781981. doi: 10.3389/fmolb.2021.781981. eCollection 2021.

本文引用的文献

1
Dynamic Crowding Regulates Transcription.动态拥挤调控转录。
Biophys J. 2020 May 5;118(9):2117-2129. doi: 10.1016/j.bpj.2019.11.007. Epub 2019 Nov 15.
2
Structural and Dynamical Signatures of Local DNA Damage in Live Cells.活细胞中局部DNA损伤的结构和动力学特征
Biophys J. 2020 May 5;118(9):2168-2180. doi: 10.1016/j.bpj.2019.10.042. Epub 2019 Nov 13.
5
Organization of Chromatin by Intrinsic and Regulated Phase Separation.染色质的固有和调控相分离组织。
Cell. 2019 Oct 3;179(2):470-484.e21. doi: 10.1016/j.cell.2019.08.037. Epub 2019 Sep 19.
6
Organization of fast and slow chromatin revealed by single-nucleosome dynamics.通过单个核小体动力学揭示快速和慢速染色质的组织。
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19939-19944. doi: 10.1073/pnas.1907342116. Epub 2019 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验