Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA.
Curr Opin Genet Dev. 2020 Apr;61:83-90. doi: 10.1016/j.gde.2020.03.008. Epub 2020 Jun 1.
The organization and dynamics of human genome govern all cellular processes - directly impacting the central dogma of biology - yet are poorly understood, especially at large length scales. Chromatin, the functional form of DNA in cells, undergoes frequent local remodeling and rearrangements to accommodate processes such as transcription, replication and DNA repair. How these local activities contribute to nucleus-wide coherent chromatin motion, where micron-scale regions of chromatin move together over several seconds, remains unclear. Activity of nuclear enzymes was found to drive the coherent chromatin dynamics, however, its biological nature and physical mechanism remain to be revealed. The coherent dynamics leads to a perpetual stirring of the genome, leading to collective gene dynamics over microns and seconds, thus likely contributing to local and global gene-expression patterns. Hence, a possible biological role of chromatin coherence may involve gene regulation.
人类基因组的组织和动态控制着所有的细胞过程——直接影响生物学的中心法则——但人们对此知之甚少,尤其是在大尺度上。染色质是细胞中 DNA 的功能形式,它会频繁地进行局部重塑和重排,以适应转录、复制和 DNA 修复等过程。这些局部活动如何有助于整个细胞核内相干染色质运动,即微米级的染色质区域在几秒钟内一起移动,目前还不清楚。研究发现,核酶的活性驱动了相干染色质的动力学,但它的生物学性质和物理机制仍有待揭示。相干动力学导致基因组的持续搅拌,导致微米和秒级的基因的集体动力学,从而可能导致局部和全局的基因表达模式。因此,染色质相干的一个可能的生物学作用可能涉及基因调控。