Department of Computer Science, Tennessee Technological University, Cookeville.
Department of Sociology and Gerontology, Miami University, Oxford, Ohio.
Gerontologist. 2019 Jan 9;59(1):167-176. doi: 10.1093/geront/gny056.
Nursing homes (NHs) using the Preferences for Everyday Living Inventory (PELI-NH) to assess important preferences and provide person-centered care find the number of items (72) to be a barrier to using the assessment.
Using a sample of n = 255 NH resident responses to the PELI-NH, we used the 16 preference items from the MDS 3.0 Section F to develop a machine learning recommender system to identify additional PELI-NH items that may be important to specific residents. Much like the Netflix recommender system, our system is based on the concept of collaborative filtering whereby insights and predictions (e.g., filters) are created using the interests and preferences of many users. The algorithm identifies multiple sets of "you might also like" patterns called association rules, based upon responses to the 16 MDS preferences that recommends an additional set of preferences with a high likelihood of being important to a specific resident.
In the evaluation of the combined apriori and logistic regression approach, we obtained a high recall performance (i.e., the ratio of correctly predicted preferences compared with all predicted preferences and nonpreferences) and high precision (i.e., the ratio of correctly predicted rules with respect to the rules predicted to be true) of 80.2% and 79.2%, respectively.
The recommender system successfully provides guidance on how to best tailor the preference items asked of residents and can support preference capture in busy clinical environments, contributing to the feasibility of delivering person-centered care.
使用日常生活偏好评估量表(PELI-NH)评估重要偏好并提供以患者为中心的护理的养老院(NHs)发现,评估中 72 项的条目数量是一个障碍。
使用 n = 255 名 NH 居民对 PELI-NH 的响应样本,我们使用 MDS 3.0 部分 F 中的 16 个偏好项目来开发机器学习推荐系统,以确定对特定居民可能重要的其他 PELI-NH 项目。与 Netflix 推荐系统非常相似,我们的系统基于协同过滤的概念,即使用许多用户的兴趣和偏好来创建见解和预测(例如,过滤器)。该算法根据对 16 个 MDS 偏好的响应识别多组“您可能还喜欢”模式,称为关联规则,并推荐一套具有高可能性对特定居民重要的额外偏好。
在联合先验和逻辑回归方法的评估中,我们获得了 80.2%的高召回率(即正确预测的偏好与所有预测的偏好和非偏好的比率)和 79.2%的高精度(即正确预测的规则与预测为真的规则的比率)。
推荐系统成功地提供了有关如何最好地定制向居民提出的偏好项目的指导,并可以支持繁忙的临床环境中的偏好捕捉,有助于实现以患者为中心的护理的可行性。