Suppr超能文献

一种机器学习推荐系统,旨在根据个人偏好进行评估,从而增强养老院居民的以人为主的护理。

A Machine Learning Recommender System to Tailor Preference Assessments to Enhance Person-Centered Care Among Nursing Home Residents.

机构信息

Department of Computer Science, Tennessee Technological University, Cookeville.

Department of Sociology and Gerontology, Miami University, Oxford, Ohio.

出版信息

Gerontologist. 2019 Jan 9;59(1):167-176. doi: 10.1093/geront/gny056.

Abstract

BACKGROUND AND OBJECTIVES

Nursing homes (NHs) using the Preferences for Everyday Living Inventory (PELI-NH) to assess important preferences and provide person-centered care find the number of items (72) to be a barrier to using the assessment.

RESEARCH DESIGN AND METHODS

Using a sample of n = 255 NH resident responses to the PELI-NH, we used the 16 preference items from the MDS 3.0 Section F to develop a machine learning recommender system to identify additional PELI-NH items that may be important to specific residents. Much like the Netflix recommender system, our system is based on the concept of collaborative filtering whereby insights and predictions (e.g., filters) are created using the interests and preferences of many users. The algorithm identifies multiple sets of "you might also like" patterns called association rules, based upon responses to the 16 MDS preferences that recommends an additional set of preferences with a high likelihood of being important to a specific resident.

RESULTS

In the evaluation of the combined apriori and logistic regression approach, we obtained a high recall performance (i.e., the ratio of correctly predicted preferences compared with all predicted preferences and nonpreferences) and high precision (i.e., the ratio of correctly predicted rules with respect to the rules predicted to be true) of 80.2% and 79.2%, respectively.

DISCUSSION AND IMPLICATIONS

The recommender system successfully provides guidance on how to best tailor the preference items asked of residents and can support preference capture in busy clinical environments, contributing to the feasibility of delivering person-centered care.

摘要

背景与目的

使用日常生活偏好评估量表(PELI-NH)评估重要偏好并提供以患者为中心的护理的养老院(NHs)发现,评估中 72 项的条目数量是一个障碍。

研究设计和方法

使用 n = 255 名 NH 居民对 PELI-NH 的响应样本,我们使用 MDS 3.0 部分 F 中的 16 个偏好项目来开发机器学习推荐系统,以确定对特定居民可能重要的其他 PELI-NH 项目。与 Netflix 推荐系统非常相似,我们的系统基于协同过滤的概念,即使用许多用户的兴趣和偏好来创建见解和预测(例如,过滤器)。该算法根据对 16 个 MDS 偏好的响应识别多组“您可能还喜欢”模式,称为关联规则,并推荐一套具有高可能性对特定居民重要的额外偏好。

结果

在联合先验和逻辑回归方法的评估中,我们获得了 80.2%的高召回率(即正确预测的偏好与所有预测的偏好和非偏好的比率)和 79.2%的高精度(即正确预测的规则与预测为真的规则的比率)。

讨论与意义

推荐系统成功地提供了有关如何最好地定制向居民提出的偏好项目的指导,并可以支持繁忙的临床环境中的偏好捕捉,有助于实现以患者为中心的护理的可行性。

相似文献

4
The Change in Nursing Home Residents' Preferences Over Time.养老院居民偏好随时间的变化。
J Am Med Dir Assoc. 2018 Dec;19(12):1092-1098. doi: 10.1016/j.jamda.2018.08.004. Epub 2018 Oct 1.

引用本文的文献

本文引用的文献

7
Advancing the Aging and Technology Agenda in Gerontology.推进老年学领域的衰老与技术议程。
Gerontologist. 2015 Oct;55(5):724-34. doi: 10.1093/geront/gnu071. Epub 2014 Aug 27.
9
The coming of age of artificial intelligence in medicine.人工智能在医学领域的成熟发展。
Artif Intell Med. 2009 May;46(1):5-17. doi: 10.1016/j.artmed.2008.07.017. Epub 2008 Sep 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验