Suppr超能文献

通过垂直纳米间隙结构的介电泳增强,精确捕获和动态重定位纳米颗粒生物分子。

Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures.

机构信息

Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.

Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Nat Commun. 2020 Jun 4;11(1):2804. doi: 10.1038/s41467-020-16630-w.

Abstract

Toward the development of surface-sensitive analytical techniques for biosensors and diagnostic biochip assays, a local integration of low-concentration target materials into the sensing region of interest is essential to improve the sensitivity and reliability of the devices. As a result, the dynamic process of sorting and accurate positioning the nanoparticulate biomolecules within pre-defined micro/nanostructures is critical, however, it remains a huge hurdle for the realization of practical surface-sensitive biosensors and biochips. A scalable, massive, and non-destructive trapping methodology based on dielectrophoretic forces is highly demanded for assembling nanoparticles and biosensing tools. Herein, we propose a vertical nanogap architecture with an electrode-insulator-electrode stack structure, facilitating the generation of strong dielectrophoretic forces at low voltages, to precisely capture and spatiotemporally manipulate nanoparticles and molecular assemblies, including lipid vesicles and amyloid-beta protofibrils/oligomers. Our vertical nanogap platform, allowing low-voltage nanoparticle captures on optical metasurface designs, provides new opportunities for constructing advanced surface-sensitive optoelectronic sensors.

摘要

为了开发用于生物传感器和诊断生物芯片分析的表面敏感分析技术,将低浓度目标材料局部集成到感兴趣的传感区域对于提高器件的灵敏度和可靠性至关重要。因此,在预定义的微/纳米结构内对纳米颗粒生物分子进行分类和精确定位的动态过程至关重要,但这对于实现实用的表面敏感生物传感器和生物芯片仍然是一个巨大的障碍。基于电介质电泳力的可扩展、大规模和非破坏性的捕获方法对于组装纳米颗粒和生物传感工具非常需要。在此,我们提出了一种具有电极-绝缘体-电极堆叠结构的垂直纳米间隙架构,可在低电压下产生强电介质电泳力,以精确捕获和时空操纵纳米颗粒和分子组装体,包括脂质体和淀粉样β原纤维/低聚物。我们的垂直纳米间隙平台允许在光学超表面设计上进行低压纳米颗粒捕获,为构建先进的表面敏感光电传感器提供了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d718/7272609/b979b317fadf/41467_2020_16630_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验