Suppr超能文献

用于酶的高通量固定化的3D打印实验室器具。

3D-Printed Labware for High-Throughput Immobilization of Enzymes.

作者信息

Spano Michael B, Tran Brandan H, Majumdar Sudipta, Weiss Gregory A

机构信息

Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States.

Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States.

出版信息

J Org Chem. 2020 Jul 2;85(13):8480-8488. doi: 10.1021/acs.joc.0c00789. Epub 2020 Jun 17.

Abstract

In continuous flow biocatalysis, chemical transformations can occur under milder, greener, more scalable, and safer conditions than conventional organic synthesis. However, the method typically involves extensive screening to optimize each enzyme's immobilization on its solid support material. The task of weighing solids for large numbers of experiments poses a bottleneck for screening enzyme immobilization conditions. For example, screening conditions often require multiple replicates exploring different support chemistries, buffer compositions, and temperatures. Thus, we report 3D-printed labware designed to measure and handle solids in multichannel format and expedite screening of enzyme immobilization conditions. To demonstrate the generality of these advances, alkaline phosphatase, glucose dehydrogenase, and laccase were screened for immobilization efficiency on seven resins. The results illustrate the requirements for optimization of each enzyme's loading and resin choice for optimal catalytic performance. Here, 3D-printed labware can decrease the requirements for an experimentalist's time by >95%. The approach to rapid optimization of enzyme immobilization is applicable to any enzyme and many solid support resins. Furthermore, the reported devices deliver precise and accurate aliquots of essentially any granular solid material.

摘要

在连续流动生物催化中,与传统有机合成相比,化学反应可以在更温和、更环保、更具可扩展性和更安全的条件下进行。然而,该方法通常需要进行大量筛选,以优化每种酶在其固体载体材料上的固定化。在大量实验中称量固体的任务成为筛选酶固定化条件的瓶颈。例如,筛选条件通常需要多次重复实验,探索不同的载体化学性质、缓冲液组成和温度。因此,我们报告了一种3D打印实验室器具,其设计用于以多通道形式测量和处理固体,并加快酶固定化条件的筛选。为了证明这些进展的通用性,我们对碱性磷酸酶、葡萄糖脱氢酶和漆酶在七种树脂上的固定化效率进行了筛选。结果说明了优化每种酶的负载量和树脂选择以实现最佳催化性能的要求。在此,3D打印实验室器具可以将实验人员的时间需求减少95%以上。这种快速优化酶固定化的方法适用于任何酶和许多固体载体树脂。此外,所报道的装置能够精确且准确地分配基本上任何颗粒状固体材料。

相似文献

1
3D-Printed Labware for High-Throughput Immobilization of Enzymes.用于酶的高通量固定化的3D打印实验室器具。
J Org Chem. 2020 Jul 2;85(13):8480-8488. doi: 10.1021/acs.joc.0c00789. Epub 2020 Jun 17.
3
3D Printing: An Emerging Technology for Biocatalyst Immobilization.3D 打印:一种新兴的生物催化剂固定化技术。
Macromol Biosci. 2022 Sep;22(9):e2200110. doi: 10.1002/mabi.202200110. Epub 2022 May 26.
10
Silica-chitosan hybrid support for laccase immobilization.载硅壳聚糖复合载体固定化漆酶。
J Biotechnol. 2020 Jul 20;318:45-50. doi: 10.1016/j.jbiotec.2020.05.004. Epub 2020 May 21.

本文引用的文献

6
Continuous flow biocatalysis.连续流生物催化。
Chem Soc Rev. 2018 Jul 30;47(15):5891-5918. doi: 10.1039/c7cs00906b.
9
The Hitchhiker's Guide to Flow Chemistry ∥.《流动化学漫游指南》。
Chem Rev. 2017 Sep 27;117(18):11796-11893. doi: 10.1021/acs.chemrev.7b00183. Epub 2017 Jun 1.
10
A Rapid Total Synthesis of Ciprofloxacin Hydrochloride in Continuous Flow.盐酸环丙沙星的连续流快速全合成
Angew Chem Int Ed Engl. 2017 Jul 17;56(30):8870-8873. doi: 10.1002/anie.201703812. Epub 2017 Jun 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验