Suppr超能文献

应用级联卷积神经网络设计进一步增强了类风湿关节炎患者超声图像关节炎疾病活动的自动评分。

Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients.

机构信息

Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark

Department of Rheumatology, Odense University Hospital, Odense, Denmark.

出版信息

Ann Rheum Dis. 2020 Sep;79(9):1189-1193. doi: 10.1136/annrheumdis-2019-216636. Epub 2020 Jun 5.

Abstract

OBJECTIVES

We have previously shown that neural network technology can be used for scoring arthritis disease activity in ultrasound images from rheumatoid arthritis (RA) patients, giving scores according to the EULAR-OMERACT grading system. We have now further developed the architecture of this neural network and can here present a new idea applying cascaded convolutional neural network (CNN) design with even better results. We evaluate the generalisability of this method on unseen data, comparing the CNN with an expert rheumatologist.

METHODS

The images were graded by an expert rheumatologist according to the EULAR-OMERACT synovitis scoring system. CNNs were systematically trained to find the best configuration. The algorithms were evaluated on a separate test data set and compared with the gradings of an expert rheumatologist on a per-joint basis using a Kappa statistic, and on a per-patient basis using a Wilcoxon signed-rank test.

RESULTS

With 1678 images available for training and 322 images for testing the model, it achieved an overall four-class accuracy of 83.9%. On a per-patient level, there was no significant difference between the classifications of the model and of a human expert (p=0.85). Our original CNN had a four-class accuracy of 75.0%.

CONCLUSIONS

Using a new network architecture we have further enhanced the algorithm and have shown strong agreement with an expert rheumatologist on a per-joint basis and on a per-patient basis. This emphasises the potential of using CNNs with this architecture as a strong assistive tool for the objective assessment of disease activity of RA patients.

摘要

目的

我们之前已经表明,神经网络技术可用于对类风湿关节炎(RA)患者的超声图像进行关节炎疾病活动评分,根据 EULAR-OMERACT 分级系统给出评分。现在,我们进一步开发了这种神经网络的架构,可以提出一种新的应用级联卷积神经网络(CNN)设计的想法,以获得更好的结果。我们通过比较 CNN 与专家风湿病学家的评估,评估了该方法在未见数据上的泛化能力。

方法

由一名专家风湿病学家根据 EULAR-OMERACT 滑膜炎评分系统对图像进行分级。我们系统地训练 CNN 以找到最佳配置。在单独的测试数据集上评估算法,并使用 Kappa 统计量和 Wilcoxon 符号秩检验分别在每个关节和每个患者的基础上,将其与专家风湿病学家的分级进行比较。

结果

使用 1678 张用于训练的图像和 322 张用于测试的图像,该模型的整体四级准确率为 83.9%。在每个患者的水平上,模型和人类专家的分类之间没有显著差异(p=0.85)。我们原始的 CNN 的四级准确率为 75.0%。

结论

使用新的网络架构,我们进一步增强了算法,并在每个关节和每个患者的基础上与专家风湿病学家的评估具有强烈的一致性。这强调了使用这种架构的 CNN 作为 RA 患者疾病活动客观评估的有力辅助工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验