Department of Global Ecology, Carnegie Institution for Science , Stanford, CA, USA.
The Systems Biology Group, Inc ., Palo Alto, CA, USA.
Plant Signal Behav. 2020 Jul 2;15(7):1776477. doi: 10.1080/15592324.2020.1776477. Epub 2020 Jun 7.
One century ago (1920), Otto Warburg (1883-1970) discovered that in liquid cultures of unicellular green algae ( sp.) molecular oxygen (O) exerts an inhibitory effect on photosynthesis. Decades later, O dependent suppression of photosynthetic carbon dioxide (CO) assimilation (the "green" Warbur geffect) was confirmed on the leaves of seed plants. Here, we summarize the history of this discovery and elucidate the consequences of the photorespiratory pathway in land plants with reference to unpublished CO exchange data measured on the leaves of sunflower () plants. In addition, we discuss the inefficiency of the key enzyme Rubisco and analyze data concerning the productivity of C3 vs. C4 crop species (sunflower vs. maize, ). Warburg's discovery inaugurated a research agenda in the biochemistry of photosynthetic CO assimilation that continues to the present. In addition, we briefly discuss Warburg's model of metabolic processes in cancer, net primary production (global photosynthesis) with respect to climate change, trees and other land plants as CO removers, and potential climate mitigators in the Anthropocene.
一个世纪前(1920 年),奥托·瓦尔堡(Otto Warburg)(1883-1970 年)发现,在单细胞绿藻(sp.)的液体培养物中,分子氧(O)对光合作用具有抑制作用。几十年后,人们在种子植物的叶片上证实了依赖 O 的光合作用二氧化碳(CO)同化的抑制作用(“绿色”瓦尔堡效应)。在这里,我们总结了这一发现的历史,并参考未发表的在向日葵()植株叶片上测量的 CO 交换数据,阐明了陆地植物光呼吸途径的后果。此外,我们讨论了关键酶 Rubisco 的低效性,并分析了关于 C3 与 C4 作物物种(向日葵与玉米,)生产力的数据。瓦尔堡的发现开创了光合作用 CO 同化生物化学的研究议程,一直延续到今天。此外,我们还简要讨论了瓦尔堡关于癌症代谢过程的模型、气候变化下的净初级生产力(全球光合作用)、树木和其他陆地植物作为 CO 清除剂,以及人类世的潜在气候缓解因素。