Suppr超能文献

新型冠状病毒肺炎:构建一个稳健的数学模型和模拟程序包,其中考虑了老龄化人口以及控制措施和再感染易感性方面的时间延迟。

COVID-19: Development of a robust mathematical model and simulation package with consideration for ageing population and time delay for control action and resusceptibility.

作者信息

Ng Kok Yew, Gui Meei Mei

机构信息

Nanotechnology and Integrated BioEngineering Centre (NIBEC), Ulster University, Jordanstown Campus, Shore Road, Newtownabbey BT37 0QB, UK.

Electrical and Computer Systems Engineering, School of Engineering, Monash University, Malaysia.

出版信息

Physica D. 2020 Oct;411:132599. doi: 10.1016/j.physd.2020.132599. Epub 2020 Jun 9.

Abstract

The current global health emergency triggered by the pandemic COVID-19 is one of the greatest challenges we face in this generation. Computational simulations have played an important role to predict the development of the current pandemic. Such simulations enable early indications on the future projections of the pandemic and is useful to estimate the efficiency of control action in the battle against the SARS-CoV-2 virus. The SEIR model is a well-known method used in computational simulations of infectious viral diseases and it has been widely used to model other epidemics such as Ebola, SARS, MERS, and influenza A. This paper presents a modified SEIRS model with additional exit conditions in the form of death rates and resusceptibility, where we can tune the exit conditions in the model to extend prediction on the current projections of the pandemic into three possible outcomes; death, recovery, and recovery with a possibility of resusceptibility. The model also considers specific information such as ageing factor of the population, time delay on the development of the pandemic due to control action measures, as well as resusceptibility with temporal immune response. Owing to huge variations in clinical symptoms exhibited by COVID-19, the proposed model aims to reflect better on the current scenario and case data reported, such that the spread of the disease and the efficiency of the control action taken can be better understood. The model is verified using two case studies based on the real-world data in South Korea and Northern Ireland.

摘要

由新型冠状病毒肺炎(COVID-19)大流行引发的当前全球卫生紧急情况是我们这一代人面临的最大挑战之一。计算模拟在预测当前大流行的发展方面发挥了重要作用。此类模拟能够对大流行的未来预测给出早期迹象,并且有助于评估抗击严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒过程中控制行动的效率。易感-暴露-感染-康复(SEIR)模型是传染病病毒计算模拟中常用的一种方法,并且已被广泛用于对其他流行病进行建模,如埃博拉、非典、中东呼吸综合征和甲型流感。本文提出了一种改进的SEIRS模型,该模型具有以死亡率和再易感性形式表示的额外退出条件,在该模型中我们可以调整退出条件,以便将对当前大流行预测的范围扩展为三种可能的结果:死亡、康复以及康复后有再感染的可能性。该模型还考虑了诸如人口老龄化因素、控制行动措施导致的大流行发展时间延迟以及随时间变化的免疫反应引起的再易感性等具体信息。由于COVID-19表现出的临床症状差异巨大,所提出的模型旨在更好地反映当前的情况和报告的病例数据,从而能够更好地理解疾病的传播情况以及所采取控制行动的效率。该模型基于韩国和北爱尔兰的真实数据通过两个案例研究进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f74/7282799/9ea1e3646edb/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验