NanoPhotonics Centre, Cavendish Laboratory, Department of Physics , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , United Kingdom.
Melville Laboratory for Polymer Synthesis, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.
Nano Lett. 2019 Mar 13;19(3):2051-2058. doi: 10.1021/acs.nanolett.9b00199. Epub 2019 Feb 19.
The resonance wavelength of a coupled plasmonic system is extremely sensitive to the distance between its metallic surfaces, resulting in "plasmon rulers". We explore this behavior in the subnanometer regime using self-assembled monolayers of bis-phthalocyanine molecules in a nanoparticle-on-mirror (NPoM) construct. These allow unprecedented subangstrom control over spacer thickness via choice of metal center, in a gap-size regime at the quantum-mechanical limit of plasmonic enhancement. A dramatic shift in the coupled plasmon resonance is observed as the gap size is varied from 0.39 to 0.41 nm. Existing theoretical models are unable to account for the observed spectral tuning, which requires inclusion of the quantum-classical interface, emphasizing the need for new treatments of light at the subnanoscale.
耦合等离子体系统的共振波长对其金属表面之间的距离极其敏感,导致出现“等离子体尺子”。我们使用纳米粒子镜(NPoM)结构中的双酞菁分子自组装单层来探索亚纳米级的这种行为。通过选择金属中心,可以在等离子体增强的量子力学极限的间隙尺寸范围内,对间隔厚度进行前所未有的亚埃控制。当间隙尺寸从 0.39nm 变为 0.41nm 时,观察到耦合等离子体共振发生了显著的移动。现有的理论模型无法解释所观察到的光谱调谐,这需要包括量子-经典界面,强调需要对亚纳米尺度的光进行新的处理。