Analytics Center of Excellence, IQVIA, Beijing, China.
Analytics Center of Excellence, IQVIA, Cambridge, Massachusetts, USA.
J Am Med Inform Assoc. 2020 Jul 1;27(7):1084-1091. doi: 10.1093/jamia/ocaa074.
Prediction of disease phenotypes and their outcomes is a difficult task. In practice, patients routinely seek second opinions from multiple clinical experts for complex disease diagnosis. Our objective is to mimic such a practice of seeking second opinions by training 2 agents with different focuses: the primary agent studies the most recent visit of the patient to learn the current health status, and then the second-opinion agent considers the entire patient history to obtain a more global view.
Our approach Dr. Agent augments recurrent neural networks with 2 policy gradient agents. Moreover, Dr. Agent is customized with various patient demographics information and learns a dynamic skip connection to focus on the relevant information over time. We trained Dr. Agent to perform 4 clinical prediction tasks on the publicly available MIMIC-III (Medical Information Mart for Intensive Care) database: (1) in-hospital mortality prediction, (2) acute care phenotype classification, (3) physiologic decompensation prediction, and (4) forecasting length of stay. We compared the performance of Dr. Agent against 4 baseline clinical predictive models.
Dr. Agent outperforms baseline clinical prediction models across all 4 tasks in terms of all metrics. Compared with the best baseline model, Dr. Agent achieves up to 15% higher area under the precision-recall curve on different tasks.
Dr. Agent can comprehensively model the long-term dependencies of patients' health status while considering patients' demographics using 2 agents, and therefore achieves better prediction performance on different clinical prediction tasks.
预测疾病表型及其结果是一项艰巨的任务。在实践中,患者通常会为复杂疾病的诊断向多位临床专家寻求第二意见。我们的目标是通过训练 2 个具有不同侧重点的代理来模拟这种寻求第二意见的做法:主要代理研究患者最近的就诊情况,以了解当前的健康状况,然后第二意见代理考虑患者的整个病史,以获得更全面的观点。
我们的方法 Dr. Agent 通过 2 个策略梯度代理增强了递归神经网络。此外,Dr. Agent 可以根据各种患者人口统计学信息进行定制,并学习动态跳过连接,以随时间关注相关信息。我们训练 Dr. Agent 在公开的 MIMIC-III(重症监护医疗信息市场)数据库上执行 4 个临床预测任务:(1)住院期间死亡率预测,(2)急性护理表型分类,(3)生理失代偿预测,以及(4)预测住院时间。我们将 Dr. Agent 的性能与 4 个基线临床预测模型进行了比较。
在所有 4 个任务中,Dr. Agent 在所有指标上均优于基线临床预测模型。与最佳基线模型相比,Dr. Agent 在不同任务上的精度-召回曲线下面积提高了高达 15%。
Dr. Agent 可以通过 2 个代理全面建模患者健康状况的长期依赖性,同时考虑患者的人口统计学信息,因此在不同的临床预测任务中实现了更好的预测性能。