Suppr超能文献

用于研究凝血生物学的微流控装置。

Microfluidic devices for studying coagulation biology.

机构信息

Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.

Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.

出版信息

Semin Cell Dev Biol. 2021 Apr;112:1-7. doi: 10.1016/j.semcdb.2020.06.002. Epub 2020 Jun 18.

Abstract

The ability to study the behavior of cells, proteins, and cell-cell or cell-protein interactions under dynamic forces such as shear stress under fluid flow, provides a more accurate understanding of the physiopathology of hemostasis. This review touches upon the traditional methods for studying blood coagulation and platelet aggregation and provides an overview on cellular and protein response to shear stress. We also elaborate on the biological aspects of how cells recognize mechanical forces and convert them into biochemical signals that can drive various signaling pathways. We give a detailed description of the various types of microfluidic devices that are employed to study the complex processes of platelet aggregation and blood coagulation under flow conditions as well as to investigate endothelial shear-response. We also highlight works mimicking artificial vessels as platforms to study the mechanisms of coagulation, and finish our review by describing anticipated clinical uses of microfluidics devices and their standardization.

摘要

在血流剪切力等动态力下研究细胞、蛋白质以及细胞-细胞或细胞-蛋白质相互作用的行为,能够更准确地理解止血的病理生理学。本文回顾了传统的血液凝固和血小板聚集研究方法,并概述了细胞和蛋白质对剪切力的反应。我们还详细阐述了细胞如何识别机械力并将其转化为生化信号,从而驱动各种信号通路的生物学方面。我们详细描述了各种类型的微流控装置,这些装置用于研究流动条件下血小板聚集和血液凝固的复杂过程,以及研究内皮剪切反应。我们还强调了模拟人工血管的工作,将其作为研究凝血机制的平台,并通过描述微流控装置的预期临床用途及其标准化来完成我们的综述。

相似文献

1
Microfluidic devices for studying coagulation biology.
Semin Cell Dev Biol. 2021 Apr;112:1-7. doi: 10.1016/j.semcdb.2020.06.002. Epub 2020 Jun 18.
2
Use of microfluidics to assess the platelet-based control of coagulation.
Platelets. 2017 Jul;28(5):441-448. doi: 10.1080/09537104.2017.1293809. Epub 2017 Mar 30.
3
Recent advances in microfluidic technology of arterial thrombosis investigations.
Platelets. 2024 Dec;35(1):2316743. doi: 10.1080/09537104.2024.2316743. Epub 2024 Feb 23.
4
Microfluidic technology as an emerging clinical tool to evaluate thrombosis and hemostasis.
Thromb Res. 2015 Jul;136(1):13-9. doi: 10.1016/j.thromres.2015.05.012. Epub 2015 May 21.
6
Milestones and perspectives in coagulation and hemostasis.
Semin Thromb Hemost. 2009 Feb;35(1):9-22. doi: 10.1055/s-0029-1214144. Epub 2009 Mar 23.
7
The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury.
Curr Opin Hematol. 2013 Sep;20(5):417-23. doi: 10.1097/MOH.0b013e3283642186.
8
Application of microfluidic devices in studies of thrombosis and hemostasis.
Platelets. 2017 Jul;28(5):434-440. doi: 10.1080/09537104.2017.1319047. Epub 2017 Jun 5.
9
Microfluidic approaches for the assessment of blood cell trauma: a focus on thrombotic risk in mechanical circulatory support devices.
Int J Artif Organs. 2016 Jun 15;39(4):184-93. doi: 10.5301/ijao.5000485. Epub 2016 Mar 30.
10
Monitoring of coagulation factor therapy in patients with von Willebrand disease type 3 using a microchip flow chamber system.
Thromb Haemost. 2017 Jan 5;117(1):75-85. doi: 10.1160/TH16-06-0430. Epub 2016 Oct 20.

引用本文的文献

1
Disseminated intravascular coagulation: cause, molecular mechanism, diagnosis, and therapy.
MedComm (2020). 2025 Jan 14;6(2):e70058. doi: 10.1002/mco2.70058. eCollection 2025 Feb.
2
Injury-on-a-chip for modelling microvascular trauma-induced coagulation.
Lab Chip. 2025 Jan 28;25(3):440-453. doi: 10.1039/d4lc00471j.
4
A Systematic Analysis of Recent Technology Trends of Microfluidic Medical Devices in the United States.
Micromachines (Basel). 2023 Jun 24;14(7):1293. doi: 10.3390/mi14071293.
6
Effects of Shear Stress on Production of FVIII and vWF in a Cell-Based Therapeutic for Hemophilia A.
Front Bioeng Biotechnol. 2021 Mar 1;9:639070. doi: 10.3389/fbioe.2021.639070. eCollection 2021.

本文引用的文献

2
Quantification of Platelet Contractile Movements during Thrombus Formation.
Thromb Haemost. 2018 Sep;118(9):1600-1611. doi: 10.1055/s-0038-1668151. Epub 2018 Aug 15.
3
Piezo1 channels are mechanosensors in human fetoplacental endothelial cells.
Mol Hum Reprod. 2018 Oct 1;24(10):510-520. doi: 10.1093/molehr/gay033.
4
Endothelial cell culture in microfluidic devices for investigating microvascular processes.
Biomicrofluidics. 2018 May 15;12(4):042203. doi: 10.1063/1.5024901. eCollection 2018 Jul.
5
Structure and mechanogating mechanism of the Piezo1 channel.
Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan 22.
6
7
Margination and stretching of von Willebrand factor in the blood stream enable adhesion.
Sci Rep. 2017 Oct 27;7(1):14278. doi: 10.1038/s41598-017-14346-4.
8
Evaluation of a microfluidic flow assay to screen for von Willebrand disease and low von Willebrand factor levels.
J Thromb Haemost. 2018 Jan;16(1):104-115. doi: 10.1111/jth.13881. Epub 2017 Nov 23.
9
Flow-induced elongation of von Willebrand factor precedes tension-dependent activation.
Nat Commun. 2017 Aug 23;8(1):324. doi: 10.1038/s41467-017-00230-2.
10
Modeling thrombus formation and growth.
Biotechnol Bioeng. 2017 Oct;114(10):2154-2172. doi: 10.1002/bit.26343. Epub 2017 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验