Suppr超能文献

剪切应力对基于细胞的甲型血友病治疗中FVIII和vWF产生的影响。

Effects of Shear Stress on Production of FVIII and vWF in a Cell-Based Therapeutic for Hemophilia A.

作者信息

Trevisan Brady, Morsi Alshaimaa, Aleman Julio, Rodriguez Martin, Shields Jordan, Meares Diane, Farland Andrew M, Doering Christopher B, Spencer H Trent, Atala Anthony, Skardal Aleks, Porada Christopher D, Almeida-Porada Graça

机构信息

Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.

Faculty of Medicine, Zagazig University, Zagazig, Egypt.

出版信息

Front Bioeng Biotechnol. 2021 Mar 1;9:639070. doi: 10.3389/fbioe.2021.639070. eCollection 2021.

Abstract

Microfluidic technology enables recapitulation of organ-level physiology to answer pertinent questions regarding biological systems that otherwise would remain unanswered. We have previously reported on the development of a novel product consisting of human placental cells (PLC) engineered to overexpress a therapeutic factor VIII (FVIII) transgene, mcoET3 (PLC-mcoET3), to treat Hemophilia A (HA). Here, microfluidic devices were manufactured to model the physiological shear stress in liver sinusoids, where infused PLC-mcoET3 are thought to lodge after administration, to help us predict the therapeutic outcome of this novel biological strategy. In addition to the therapeutic transgene, PLC-mcoET3 also constitutively produce endogenous FVIII and von Willebrand factor (vWF), which plays a critical role in FVIII function, immunogenicity, stability, and clearance. While vWF is known to respond to flow by changing conformation, whether and how shear stress affects the production and secretion of vWF and FVIII has not been explored. We demonstrated that exposure of PLC-mcoET3 to physiological levels of shear stress present within the liver sinusoids significantly reduced mRNA levels and secreted FVIII and vWF when compared to static conditions. In contrast, mRNA for the vector-encoded mcoET3 was unaltered by flow. To determine the mechanism responsible for the observed decrease in FVIII and vWF mRNA, PCR arrays were performed to evaluate expression of genes involved in shear mechanosensing pathways. We found that flow conditions led to a significant increase in KLF2, which induces miRNAs that negatively regulate expression of FVIII and vWF, providing a mechanistic explanation for the reduced expression of these proteins in PLC under conditions of flow. In conclusion, microfluidic technology allowed us to unmask novel pathways by which endogenous FVIII and vWF are affected by shear stress, while demonstrating that expression of the therapeutic mcoET3 gene will be maintained in the gene-modified PLCs upon transplantation, irrespective of whether they engraft within sites that expose them to conditions of shear stress.

摘要

微流控技术能够重现器官水平的生理学过程,以解答有关生物系统的相关问题,否则这些问题将一直无法得到解答。我们之前曾报道过一种新产品的开发,该产品由经过基因工程改造的人胎盘细胞(PLC)组成,这些细胞过表达治疗性因子VIII(FVIII)转基因mcoET3(PLC-mcoET3),用于治疗甲型血友病(HA)。在此,制造了微流控装置来模拟肝血窦中的生理剪切应力,注入的PLC-mcoET3在给药后被认为会在此处驻留,以帮助我们预测这种新型生物策略的治疗效果。除了治疗性转基因外,PLC-mcoET3还组成性地产生内源性FVIII和血管性血友病因子(vWF),vWF在FVIII的功能、免疫原性、稳定性和清除中起关键作用。虽然已知vWF会通过改变构象来响应流动,但剪切应力是否以及如何影响vWF和FVIII的产生和分泌尚未得到探索。我们证明,与静态条件相比,将PLC-mcoET3暴露于肝血窦中存在的生理水平剪切应力会显著降低mRNA水平以及分泌的FVIII和vWF。相比之下,载体编码的mcoET3的mRNA不受流动影响。为了确定导致观察到的FVIII和vWF mRNA减少的机制,进行了PCR阵列分析以评估参与剪切机械传感途径的基因的表达。我们发现流动条件导致KLF2显著增加,KLF2会诱导对FVIII和vWF表达起负调节作用的miRNA,这为在流动条件下PLC中这些蛋白质表达降低提供了一个机制解释。总之,微流控技术使我们能够揭示内源性FVIII和vWF受剪切应力影响的新途径,同时证明治疗性mcoET3基因在移植后的基因修饰PLC中表达将得以维持,无论它们是否植入使其暴露于剪切应力条件的部位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f83/7957060/0959373cb675/fbioe-09-639070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验