Li Na, Zhou Xuanru, Chen Shupeng, Dai Jingjing, Wang Tangsheng, Zhang Chulong, He Wenfeng, Xie Yaoqin, Liang Xiaokun
School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, China.
Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan, Guangdong, China.
Front Oncol. 2023 Feb 22;13:1127866. doi: 10.3389/fonc.2023.1127866. eCollection 2023.
To develop a contrast learning-based generative (CLG) model for the generation of high-quality synthetic computed tomography (sCT) from low-quality cone-beam CT (CBCT). The CLG model improves the performance of deformable image registration (DIR).
This study included 100 post-breast-conserving patients with the pCT images, CBCT images, and the target contours, which the physicians delineated. The CT images were generated from CBCT images the proposed CLG model. We used the Sct images as the fixed images instead of the CBCT images to achieve the multi-modality image registration accurately. The deformation vector field is applied to propagate the target contour from the pCT to CBCT to realize the automatic target segmentation on CBCT images. We calculate the Dice similarity coefficient (DSC), 95 Hausdorff distance (HD95), and average surface distance (ASD) between the prediction and reference segmentation to evaluate the proposed method.
The DSC, HD95, and ASD of the target contours with the proposed method were 0.87 ± 0.04, 4.55 ± 2.18, and 1.41 ± 0.56, respectively. Compared with the traditional method without the synthetic CT assisted (0.86 ± 0.05, 5.17 ± 2.60, and 1.55 ± 0.72), the proposed method was outperformed, especially in the soft tissue target, such as the tumor bed region.
The CLG model proposed in this study can create the high-quality sCT from low-quality CBCT and improve the performance of DIR between the CBCT and the pCT. The target segmentation accuracy is better than using the traditional DIR.
开发一种基于对比学习的生成式(CLG)模型,用于从低质量锥形束CT(CBCT)生成高质量的合成计算机断层扫描(sCT)。CLG模型可提高可变形图像配准(DIR)的性能。
本研究纳入了100例保乳术后患者,他们有pCT图像、CBCT图像以及医生勾画的目标轮廓。使用所提出的CLG模型从CBCT图像生成CT图像。我们使用sCT图像作为固定图像而非CBCT图像,以准确实现多模态图像配准。应用变形向量场将目标轮廓从pCT传播到CBCT,以在CBCT图像上实现自动目标分割。我们计算预测分割与参考分割之间的骰子相似系数(DSC)、95%豪斯多夫距离(HD95)和平均表面距离(ASD),以评估所提出的方法。
所提出方法的目标轮廓的DSC、HD95和ASD分别为0.87±0.04、4.55±2.18和1.41±0.56。与无合成CT辅助的传统方法(0.86±0.05、5.17±2.60和1.55±0.72)相比,所提出的方法表现更优,尤其是在软组织目标(如肿瘤床区域)方面。
本研究中提出的CLG模型可以从低质量CBCT创建高质量sCT,并提高CBCT与pCT之间DIR的性能。目标分割精度优于使用传统的DIR。