Sollmann Nico, Löffler Maximilian T, Kronthaler Sophia, Böhm Christof, Dieckmeyer Michael, Ruschke Stefan, Kirschke Jan S, Carballido-Gamio Julio, Karampinos Dimitrios C, Krug Roland, Baum Thomas
Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
J Magn Reson Imaging. 2021 Jul;54(1):12-35. doi: 10.1002/jmri.27260. Epub 2020 Jun 25.
Osteoporosis is a systemic skeletal disease with a high prevalence worldwide, characterized by low bone mass and microarchitectural deterioration, predisposing an individual to fragility fractures. Dual-energy X-ray absorptiometry (DXA) has been the clinical reference standard for diagnosing osteoporosis and for assessing fracture risk for decades. However, other imaging modalities are of increasing importance to investigate the etiology, treatment, and fracture risk. The purpose of this work is to review the available literature on quantitative magnetic resonance imaging (MRI) methods and related findings in osteoporosis at the spine and proximal femur as the clinically most important fracture sites. Trabecular bone microstructure analysis at the proximal femur based on high-resolution MRI allows for a better prediction of osteoporotic fracture risk than DXA-based bone mineral density (BMD) alone. In the 1990s, T * mapping was shown to correlate with the density and orientation of the trabecular bone. Recently, quantitative susceptibility mapping (QSM), which overcomes some of the limitations of T * mapping, has been applied for trabecular bone quantifications at the spine, whereas ultrashort echo time (UTE) imaging provides valuable surrogate markers of cortical bone quantity and quality. Magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) enable the quantitative assessment of the nonmineralized bone compartment through extraction of the bone marrow fat fraction (BMFF). Furthermore, CSE-MRI allows for the differentiation of osteoporotic vs. pathologic fractures, which is of high clinical relevance. Lastly, advanced postprocessing and image analysis tools, particularly considering statistical parametric mapping and region-specific BMFF distributions, have high potential to further improve MRI-based fracture risk assessments at the spine and hip. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
骨质疏松症是一种在全球范围内具有高患病率的全身性骨骼疾病,其特征为骨量低和微结构退化,使个体易发生脆性骨折。几十年来,双能X线吸收法(DXA)一直是诊断骨质疏松症和评估骨折风险的临床参考标准。然而,其他成像方式对于研究病因、治疗和骨折风险的重要性日益增加。这项工作的目的是回顾关于定量磁共振成像(MRI)方法以及在临床上最重要的骨折部位——脊柱和股骨近端的骨质疏松症相关研究结果的现有文献。基于高分辨率MRI的股骨近端小梁骨微结构分析比单独基于DXA的骨矿物质密度(BMD)能更好地预测骨质疏松性骨折风险。在20世纪90年代,T映射被证明与小梁骨的密度和方向相关。最近,克服了T映射一些局限性的定量磁化率映射(QSM)已应用于脊柱小梁骨定量,而超短回波时间(UTE)成像提供了皮质骨数量和质量的有价值替代指标。磁共振波谱(MRS)和基于化学位移编码的水脂MRI(CSE-MRI)能够通过提取骨髓脂肪分数(BMFF)对非矿化骨成分进行定量评估。此外,CSE-MRI能够区分骨质疏松性骨折与病理性骨折,这具有很高的临床相关性。最后,先进的后处理和图像分析工具,特别是考虑统计参数映射和区域特异性BMFF分布的工具,具有进一步改善基于MRI的脊柱和髋部骨折风险评估的巨大潜力。证据水平:5 技术疗效阶段:2。