Suppr超能文献

新冠病毒与其他人类冠状病毒的蛋白质合成率比较分析。

Comparative analysis of protein synthesis rate in COVID-19 with other human coronaviruses.

机构信息

Department of Computer Science and Engineering, National Institute of Technology, Warangal, Telangana-506004, India.

出版信息

Infect Genet Evol. 2020 Nov;85:104432. doi: 10.1016/j.meegid.2020.104432. Epub 2020 Jun 25.

Abstract

The genetic code contains information that impacts the efficiency and rate of translation. Translation elongation plays a crucial role in determining the composition of the proteome, errors within a protein contributes towards disease processes. It is important to analyze the novel coronavirus (2019-nCoV) at the codon level to find similarities and variations in hosts to compare with other human coronavirus (CoVs). This requires a comparative and comprehensive study of various human and zoonotic nature CoVs relating to codon usage bias, relative synonymous codon usage (RSCU), proportions of slow codons, and slow di-codons, the effective number of codons (ENC), mutation bias, codon adaptation index (CAI), and codon frequencies. In this work, seven different CoVs were analyzed to determine the protein synthesis rate and the adaptation of these viruses to the host cell. The result reveals that the proportions of slow codons and slow di-codons in human host of 2019-nCoV and SARS-CoV found to be similar and very less compared to the other five coronavirus types, which suggest that the 2019-nCoV and SARS-CoV have faster protein synthesis rate. Zoonotic CoVs have high RSCU and codon adaptation index than human CoVs which implies the high translation rate in zoonotic viruses. All CoVs have more AT% than GC% in genetic codon compositions. The average ENC values of seven CoVs ranged between 38.36 and 49.55, which implies the CoVs are highly conserved and are easily adapted to host cells. The mutation rate of 2019-nCoV is comparatively less than MERS-CoV and NL63 that shows an evidence for genetic diversity. Host-specific codon composition analysis portrays the relation between viral host sequences and the capability of novel virus replication in host cells. Moreover, the analysis provides useful measures for evaluating a virus-host adaptation, transmission potential of novel viruses, and thus contributes to the strategies of anti-viral drug design.

摘要

遗传密码包含影响翻译效率和速度的信息。翻译延伸在决定蛋白质组组成方面起着至关重要的作用,蛋白质内的错误会导致疾病过程。在密码子水平上分析新型冠状病毒(2019-nCoV)以发现宿主之间的相似性和差异,与其他人类冠状病毒(CoVs)进行比较是很重要的。这需要对各种与密码子使用偏好、相对同义密码子使用(RSCU)、慢密码子比例和慢双密码子、有效密码子数(ENC)、突变偏好、密码子适应指数(CAI)和密码子频率相关的人类和人畜共患自然 CoVs 进行比较和综合研究。在这项工作中,分析了七种不同的 CoV,以确定蛋白质合成率和这些病毒对宿主细胞的适应性。结果表明,2019-nCoV 和 SARS-CoV 人类宿主中的慢密码子和慢双密码子比例与其他五种冠状病毒类型相似且非常低,这表明 2019-nCoV 和 SARS-CoV 具有更快的蛋白质合成率。人畜共患 CoVs 的 RSCU 和密码子适应指数都高于人类 CoVs,这意味着人畜共患病毒的翻译效率更高。所有 CoVs 的遗传密码子组成中 AT% 都高于 GC%。七种 CoVs 的平均 ENC 值在 38.36 到 49.55 之间,这意味着 CoVs 高度保守,很容易适应宿主细胞。2019-nCoV 的突变率低于 MERS-CoV 和 NL63,这表明其具有遗传多样性。宿主特异性密码子组成分析描绘了病毒宿主序列之间的关系,以及新型病毒在宿主细胞中复制的能力。此外,该分析为评估病毒-宿主适应性、新型病毒的传播潜力提供了有用的措施,从而为抗病毒药物设计策略做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c99/7314694/f1832a91e075/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验