Suppr超能文献

使用哈尔小波进行逐搏血压估计的精确基准点检测

Accurate Fiducial Point Detection Using Haar Wavelet for Beat-by-Beat Blood Pressure Estimation.

作者信息

Singla Muskan, Azeemuddin Syed, Sistla Prasad

机构信息

Centre of VLSI and Embedded System TechnologyInternational Institute of Information TechnologyHyderabad500032India.

Care FoundationCare HospitalHyderabad500034India.

出版信息

IEEE J Transl Eng Health Med. 2020 Jun 5;8:1900711. doi: 10.1109/JTEHM.2020.3000327. eCollection 2020.

Abstract

UNLABELLED

Pulse Arrival Time (PAT) derived from Electrocardiogram (ECG) and Photoplethysmogram (PPG) for cuff-less Blood Pressure (BP) measurement has been a contemporary and widely accepted technique. However, the features extracted for it are conventionally from an isolated pulse of ECG and PPG signals. As a result, the estimated BP is intermittent.

OBJECTIVE

This paper presents feature extraction from each beat of ECG and PPG signals to make BP measurements uninterrupted. These features are extracted by employing Haar transformation to adaptively attenuate measurement noise and improve the fiducial point detection precision.

METHOD

the use of only PAT feature as an independent variable leads to an inaccurate estimation of either Systolic Blood Pressure (SBP) or Diastolic Blood Pressure (DBP) or both. We propose the extraction of supplementary features that are highly correlated to physiological parameters. Concurrent data was collected as per the Association for the Advancement of Medical Instrumentation (AAMI) guidelines from 171 human subjects belonging to diverse age groups. An Adaptive Window Wavelet Transformation (AWWT) technique based on Haar wavelet transformation has been introduced to segregate pulses. Further, an algorithm based on log-linear regression analysis is developed to process extracted features from each beat to calculate BP.

RESULTS

The mean error of 0.43 and 0.20 mmHg, mean absolute error of 4.6 and 2.3 mmHg, and Standard deviation of 6.13 and 3.06 mmHg is achieved for SBP and DBP respectively.

CONCLUSIONS

The features extracted are highly precise and evaluated BP values are as per the AAMI standards. Clinical Impact: This continuous real-time BP monitoring technique can be useful in the treatment of hypertensive and potential-hypertensive subjects.

摘要

未标注

源自心电图(ECG)和光电容积脉搏波描记图(PPG)的脉搏到达时间(PAT)用于无袖带血压(BP)测量,这是一种当代广泛接受的技术。然而,传统上从ECG和PPG信号的单个孤立脉冲中提取其特征。因此,估计的血压是间歇性的。

目的

本文提出从ECG和PPG信号的每个搏动中提取特征,以使血压测量不间断。通过采用哈尔变换来自适应地衰减测量噪声并提高基准点检测精度来提取这些特征。

方法

仅将PAT特征用作自变量会导致收缩压(SBP)或舒张压(DBP)或两者的估计不准确。我们建议提取与生理参数高度相关的补充特征。按照医学仪器促进协会(AAMI)指南,从171名不同年龄组的人类受试者中收集同步数据。引入了基于哈尔小波变换的自适应窗口小波变换(AWWT)技术来分离脉搏。此外,开发了一种基于对数线性回归分析的算法,以处理从每个搏动中提取的特征来计算血压。

结果

SBP和DBP的平均误差分别为0.43和0.20 mmHg,平均绝对误差为4.6和2.3 mmHg,标准差为6.13和3.06 mmHg。

结论

提取的特征高度精确,评估的血压值符合AAMI标准。临床影响:这种连续实时血压监测技术可用于治疗高血压和潜在高血压患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8af/7316202/6c398fe733d6/singl1abcdef-3000327.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验